Semi-Automatic Segmentation of Paranasal Sinus from CT images Using Fully Convolutional Networks

被引:0
作者
Xiong, Kun [1 ]
Kitamura, Takahiro [2 ]
Iwamoto, Yutaro [1 ]
Han, Xian-Hua [3 ]
Matsushiro, Naoki [4 ]
Nishimura, Hiroshi [2 ]
Chen, Yen-Wei [1 ]
机构
[1] Ritsumeikan Univ, Grad Sch Informat Sci & Engn, Kusatsu, Shiga, Japan
[2] Natl Hosp Org Osaka Natl Hosp, Dept Otorhinolaryngol Head & Neck Surg, Osaka, Japan
[3] Yamaguchi Univ, Grad Sch Sci & Technol Innovat, Yamaguchi, Japan
[4] Osaka Police Hosp, Dept Otolaryngol, Osaka, Japan
来源
2018 IEEE 7TH GLOBAL CONFERENCE ON CONSUMER ELECTRONICS (GCCE 2018) | 2018年
关键词
fully convolutional network (FCN); paranasal sinus segmentation; CT image; bounding box;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a novel image representation approach for paranasal sinus segmentation in computed tomography (CT) images of the brain. Our proposed method is based on a fully convolutional network (FCN), which is extensively used in a variety of computer vision applications. Experimental results demonstrate that our proposed method is efficient and effective for paranasal sinus segmentation.
引用
收藏
页码:268 / 269
页数:2
相关论文
共 7 条
[1]  
[Anonymous], 2012, NIPS2012
[2]  
Deng Z, 2017, INT C INN MED HEALTH, P89
[3]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[4]  
MEYBODI AT, 2017, WORLD NEUROSURG, V103, P950
[5]   Toward automatic phenotyping of developing embryos from videos [J].
Ning, F ;
Delhomme, D ;
LeCun, Y ;
Piano, F ;
Bottou, L ;
Barbano, PE .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (09) :1360-1371
[6]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[7]  
SZEGEDY C, 2014, CORR ABS 1409 4842