Effect of increasing anodic NaCl concentration on microbial fuel cell performance

被引:180
作者
Lefebvre, Olivier [1 ]
Tan, Zi [1 ]
Kharkwal, Shailesh [1 ]
Ng, How Y. [1 ]
机构
[1] Natl Univ Singapore, Dept Civil & Environm Engn, Ctr Water Res, Singapore 117576, Singapore
基金
新加坡国家研究基金会;
关键词
Acidogenesis; Anaerobic digestion; Electrogenesis; Methanogenesis; TDS; WASTE-WATER; ELECTRICITY-GENERATION; ANAEROBIC-DIGESTION; CONFIGURATION; DIVERSITY;
D O I
10.1016/j.biortech.2012.02.048
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
High salinity effluents represent an estimated 5% of the wastewater generated worldwide. In microbial fuel cells, high salinity is usually considered beneficial to power production because increased conductivity facilitates proton transfer and therefore decreases the internal resistance of the system. However, high salt concentrations are known to adversely affect the physiology of anaerobic microbial consortia. In this study, the effect of increasing NaCl concentration in the anode chamber of a microbial fuel cell fed with sodium acetate was tested. Adding up to 20 gL(-1) of NaCl enhanced the overall performance of the system, reducing the internal resistance by 33% and increasing the maximum power production by 30%. Higher NaCl concentration proved detrimental to the system. However, the Coulombic efficiency started to be affected at a much lower NaCl concentration of 10 gL(-1), showing that the anodophilic bacteria are sensitive to NaCl at relatively low concentrations. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:336 / 340
页数:5
相关论文
共 20 条
[1]   A New Method for Water Desalination Using Microbial Desalination Cells [J].
Cao, Xiaoxin ;
Huang, Xia ;
Liang, Peng ;
Xiao, Kang ;
Zhou, Yingjun ;
Zhang, Xiaoyuan ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (18) :7148-7152
[2]   Inhibition of anaerobic digestion process: A review [J].
Chen, Ye ;
Cheng, Jay J. ;
Creamer, Kurt S. .
BIORESOURCE TECHNOLOGY, 2008, 99 (10) :4044-4064
[3]   Evaluation of biocathodes in freshwater and brackish sediment microbial fuel cells [J].
De Schamphelaire, Liesje ;
Boeckx, Pascal ;
Verstraete, Willy .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2010, 87 (05) :1675-1687
[4]   Quantification of the Internal Resistance Distribution of Microbial Fuel Cells [J].
Fan, Yanzhen ;
Sharbrough, Evan ;
Liu, Hong .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (21) :8101-8107
[5]   Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells [J].
Freguia, Stefano ;
Rabaey, Korneel ;
Yuan, Zhiguo ;
Keller, Juerg .
WATER RESEARCH, 2008, 42 (6-7) :1387-1396
[6]  
Ghangrekar MM, 2010, REV CHIM-BUCHAREST, V61, P272
[7]   Operational parameters affecting the performance of a mediator-less microbial fuel cell [J].
Gil, GC ;
Chang, IS ;
Kim, BH ;
Kim, M ;
Jang, JK ;
Park, HS ;
Kim, HJ .
BIOSENSORS & BIOELECTRONICS, 2003, 18 (04) :327-334
[8]   Impact of increasing NaCl concentrations on the performance and community composition of two anaerobic reactors [J].
Lefebvre, O. ;
Quentin, S. ;
Torrijos, M. ;
Godon, J. J. ;
Delgenes, J. P. ;
Moletta, R. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 75 (01) :61-69
[9]   Microbial diversity in hypersaline wastewater: the example of tanneries [J].
Lefebvre, O. ;
Vasudevan, N. ;
Thanasekaran, K. ;
Moletta, R. ;
Godon, J. J. .
EXTREMOPHILES, 2006, 10 (06) :505-513
[10]   T-RFLP reveals high β-Proteobacteria diversity in microbial fuel cells enriched with domestic wastewater [J].
Lefebvre, O. ;
Nguyen, T. T. Ha ;
Al-Mamun, A. ;
Chang, I. S. ;
Ng, H. Y. .
JOURNAL OF APPLIED MICROBIOLOGY, 2010, 109 (03) :839-850