Surface Segregation in Chromium-Doped Nanocrystalline Tin Dioxide Pigments

被引:16
作者
Castro, Ricardo H. R. [1 ,2 ]
Rufner, Jorgen [1 ]
Hidalgo, Pilar [3 ]
Gouvea, Douglas [4 ]
Coaquira, Jose A. H. [5 ]
van Benthem, Klaus [1 ,2 ]
机构
[1] Univ Calif Davis, Chem Engn & Mat Sci Dept, Davis, CA 95616 USA
[2] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA
[3] Univ Brasilia, Gama Coll & Energy Engn, BR-70910900 Brasilia, DF, Brazil
[4] Univ Sao Paulo, Dept Met & Mat Engn, BR-05508900 Sao Paulo, Brazil
[5] Univ Brasilia, Inst Fis, Nucl Fis Aplicada, BR-70910900 Brasilia, DF, Brazil
基金
巴西圣保罗研究基金会;
关键词
THERMAL DEHYDRATION; SNO2; NANOPARTICLES; MICROSTRUCTURE; EVOLUTION; ZIRCONIA; STATE; OXIDE;
D O I
10.1111/j.1551-2916.2011.04868.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface properties play an important role in understanding and controlling nanocrystalline materials. The accumulation of dopants on the surface, caused by surface segregation, can therefore significantly affect nanomaterials properties at low doping levels, offering a way to intentionally control nanoparticles features. In this work, we studied the distribution of chromium ions in SnO2 nanoparticles prepared by a liquid precursor route at moderate temperatures (500 degrees C). The powders were characterized by infrared spectroscopy, X-ray diffraction, (scanning) transmission electron microscopy, Electron Energy Loss Spectroscopy, and Mossbauer spectroscopy. We showed that this synthesis method induces a limited solid solution of chromium into SnO2 and a segregation of chromium to the surface. The s-electron density and symmetry of Sn located on the surface were significantly affected by the doping, while Sn located in the bulk remained unchanged. Chromium ions located on the surface and in the bulk showed distinct oxidation states, giving rise to the intense violet color of the nanoparticles suitable for pigment application.
引用
收藏
页码:170 / 176
页数:7
相关论文
共 32 条
  • [1] Tin dioxide nanoparticles: Reverse micellar synthesis and gas sensing properties
    Ahmed, Jahangeer
    Vaidya, Sonalika
    Ahmad, Tokeer
    Devi, P. Sujatha
    Das, Dipankar
    Ganguli, Ashok K.
    [J]. MATERIALS RESEARCH BULLETIN, 2008, 43 (02) : 264 - 271
  • [2] Atomistic modelling of adsorption and segregation at inorganic solid interfaces
    Allen, Jeremy P.
    Gren, Wojciech
    Molinari, Marco
    Arrouvel, Corinne
    Maglia, Filippo
    Parker, Stephen C.
    [J]. MOLECULAR SIMULATION, 2009, 35 (07) : 584 - 608
  • [3] Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images
    Bosman, M.
    Watanabe, M.
    Alexander, D. T. L.
    Keast, V. J.
    [J]. ULTRAMICROSCOPY, 2006, 106 (11-12) : 1024 - 1032
  • [4] Cao G., 2004, Nanostructures Nanomaterials: Synthesis, Properties Applications
  • [5] Castro RHR, 2005, EUR J INORG CHEM, P2134
  • [6] Microstructure and structure of NiO-SnO2 and Fe2O3-SnO2 systems
    Castro, RHR
    Hidalgo, P
    Muccillo, R
    Gouvêa, D
    [J]. APPLIED SURFACE SCIENCE, 2003, 214 (1-4) : 172 - 177
  • [7] Surface modification of SnO2 nanoparticles containing Mg or Fe:: Effects on sintering
    Castro, Ricardo H. R.
    Pereira, Gilberto J.
    Gouvea, Douglas
    [J]. APPLIED SURFACE SCIENCE, 2007, 253 (10) : 4581 - 4585
  • [8] Interface Energy Measurement of MgO and ZnO: Understanding the Thermodynamic Stability of Nanoparticles
    Castro, Ricardo H. R.
    Torres, Ricardo B.
    Pereira, Gilberto J.
    Gouvea, Douglas
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (08) : 2502 - 2509
  • [9] Cerri JA, 1996, J AM CERAM SOC, V79, P799, DOI 10.1111/j.1151-2916.1996.tb07949.x
  • [10] Egerton R.F., 1996, ELECT ENERGY LOSS SP