Stability analysis for a new model of multi-species convection-diffusion-reaction in poroelastic tissue

被引:15
作者
de Oliveira Vilaca, Luis Miguel [1 ]
Gomez-Vargas, Bryan [2 ,3 ,4 ]
Kumar, Sarvesh [5 ]
Ruiz-Baier, Ricardo [6 ,7 ,8 ,9 ]
Verma, Nitesh [5 ]
机构
[1] Univ Geneva, Dept Genet & Evolut, 4 Blvd Yvoy, CH-1205 Geneva, Switzerland
[2] Univ Concepcion, CI2 MA, Casilla 160-C, Concepcion, Chile
[3] Univ Concepcion, Dept Ingn Matemat, Casilla 160-C, Concepcion, Chile
[4] Univ Costa Rica, Sede Occidente, Sect Matemat, San Ramon, CA USA
[5] Indian Inst Space Sci & Technol, Dept Math, Trivandrum 695547, Kerala, India
[6] Sechenov Univ, Inst Personalised Med, Lab Math Modelling, Moscow, Russia
[7] Univ Oxford, Math Inst, A Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[8] Univ Adventista Chile, Casilla 7-D, Chillan, Chile
[9] Monash Univ, Sch Math, 9 Rainforest Walk, Clayton, Vic 3800, Australia
关键词
Biot equations; Convection-diffusion-reaction; Linear stability analysis; Soft poroelastic tissue; Biomedical applications; TRANSPORT; GROWTH;
D O I
10.1016/j.apm.2020.04.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We perform the linear stability analysis of a new model for poromechanical processes with inertia (formulated in mixed form using the solid deformation, fluid pressure, and total pressure) interacting with diffusing and reacting solutes convected in the medium. We find parameter regions that lead to spatio temporal instabilities of the coupled system. The mutual dependences between deformation and diffusive patterns are of substantial relevance in the study of morphoelastic changes in bio-materials. We provide a set of computational examples in 2D and 3D (related to brain mechanobiology) that can be used to form a better understanding on how, and up to which extent, the deformations of the porous structure dictate the generation and suppression of spatial patterning dynamics, also related to the onset of mechano-chemical waves. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:425 / 446
页数:22
相关论文
共 25 条
[1]  
[Anonymous], WELL POISEDNES UNPUB
[2]  
[Anonymous], LECT NOTES
[3]  
[Anonymous], MOVING GRID FI UNPUB
[4]   Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow [J].
Calo, V. M. ;
Brasher, N. F. ;
Bazilevs, Y. ;
Hughes, T. J. R. .
COMPUTATIONAL MECHANICS, 2008, 43 (01) :161-177
[5]   Instabilities and patterns in coupled reaction-diffusion layers [J].
Catlla, Anne J. ;
McNamara, Amelia ;
Topaz, Chad M. .
PHYSICAL REVIEW E, 2012, 85 (02)
[6]   Effective equations governing an active poroelastic medium [J].
Collis, J. ;
Brown, D. L. ;
Hubbard, M. E. ;
O'Dea, R. D. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2198)
[7]   Inverse poroelasticity as a fundamental mechanism in biomechanics and mechanobiology [J].
Ehret, Alexander E. ;
Bircher, Kevin ;
Stracuzzi, Alberto ;
Marina, Vita ;
Zundel, Manuel ;
Mazza, Edoardo .
NATURE COMMUNICATIONS, 2017, 8
[8]   Monte Carlo Simulation of Photon Migration in 3D Turbid Media Accelerated by Graphics Processing Units [J].
Fang, Qianqian ;
Boas, David A. .
OPTICS EXPRESS, 2009, 17 (22) :20178-20190
[9]   On the mechanical stability of growing arteries [J].
Goriely, Alain ;
Vandiver, Rebecca .
IMA JOURNAL OF APPLIED MATHEMATICS, 2010, 75 (04) :549-570
[10]   Modeling Growth in Biological Materials [J].
Jones, Gareth Wyn ;
Chapman, S. Jonathan .
SIAM REVIEW, 2012, 54 (01) :52-118