Singular Fermi surfaces II. The two-dimensional case

被引:10
作者
Feldman, Joel [1 ]
Salmhofer, Manfred [1 ,2 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Leipzig, D-04009 Leipzig, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
fermion systems; Fermi surface; Van hove singularities; renormalization;
D O I
10.1142/S0129055X08003304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider many-fermion systems with singular Fermi surfaces, which contain Van Hove points where the gradient of the band function k bar right arrow e( k) vanishes. In a previous paper, we have treated the case of spatial dimension d >= 3. In this paper, we focus on the more singular case d = 2 and establish properties of the fermionic self-energy to all orders in perturbation theory. We show that there is an asymmetry between the spatial and frequency derivatives of the self-energy. The derivative with respect to the Matsubara frequency diverges at the Van Hove points, but, surprisingly, the self-energy is C-1 in the spatial momentum to all orders in perturbation theory, provided the Fermi surface is curved away from the Van Hove points. In a prototypical example, the second spatial derivative behaves similarly to the first frequency derivative. We discuss the physical significance of these findings.
引用
收藏
页码:275 / 334
页数:60
相关论文
共 24 条
[1]   The Hubbard model at half-filling, Part III: The lower bound on the self-energy [J].
Afchain, S ;
Magnen, J ;
Rivasseau, V .
ANNALES HENRI POINCARE, 2005, 6 (03) :449-483
[2]   Renormalization of the 2-point function of the Hubbard model at half-filling [J].
Afchain, S ;
Magnen, J ;
Rivasseau, V .
ANNALES HENRI POINCARE, 2005, 6 (03) :399-448
[3]  
BROX D, 2005, THESIS U BRIT COLUMB
[4]  
Feldman J, 2000, COMMUN PUR APPL MATH, V53, P1350, DOI 10.1002/1097-0312(200011)53:11<1350::AID-CPA2>3.0.CO
[5]  
2-D
[6]   Perturbation theory around nonnested Fermi surfaces .1. Keeping the Fermi surface fixed [J].
Feldman, J ;
Salmhofer, M ;
Trubowitz, E .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (5-6) :1209-1336
[7]  
Feldman J, 1999, COMMUN PUR APPL MATH, V52, P273, DOI 10.1002/(SICI)1097-0312(199903)52:3<273::AID-CPA1>3.0.CO
[8]  
2-1
[9]  
Feldman J, 1998, COMMUN PUR APPL MATH, V51, P1133, DOI 10.1002/(SICI)1097-0312(199809/10)51:9/10<1133::AID-CPA8>3.0.CO
[10]  
2-E