New entropic inequalities for qubit and unimodal Gaussian states

被引:8
作者
Lopez-Saldivar, J. A. [1 ,3 ]
Castanos, O. [1 ]
Man'ko, M. A. [2 ]
Man'ko, V. I. [2 ,3 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Univ Nacl Inst Ciencias Nucl, Apdo Postal 70-543, Mexico City 04510, DF, Mexico
[2] Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
[3] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Region, Russia
关键词
Relative entropy; Entropic inequalities; Qubit; Gaussian states; INFORMATION;
D O I
10.1016/j.physa.2017.09.027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Tsallis relative entropy S-q((rho) over cap, (sigma) over cap) measures the distance between two arbitrary density matrices (rho) over cap and (sigma) over cap. In this work the approximation to this quantity when q = 1+ delta (delta << 1) is obtained. It is shown that the resulting series is equal to the von Neumann relative entropy when delta = 0. Analyzing the von Neumann relative entropy for an arbitrary (rho) over cap and a thermal equilibrium state (sigma) over cap = e(-beta(H) over cap)/Tr(e(-beta(H) over cap)) is possible to define a new inequality relating the energy, the entropy, and the partition function of the system. From this inequality, a parameter that measures the distance between the two states is defined. This distance is calculated for a general qubit system and for an arbitrary unimodal Gaussian state. In the qubit case, the dependence on the purity of the system is studied for T >= 0 and also for T < 0. In the Gaussian case the general partition function, given a unimodal quadratic Hamiltonian, is calculated and the comparison of the thermal light state as a thermal equilibrium state of the parametric amplifier is presented. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 70
页数:7
相关论文
共 25 条
[1]   Continuous Variable Quantum Information: Gaussian States and Beyond [J].
Adesso, Gerardo ;
Ragy, Sammy ;
Lee, Antony R. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2014, 21 (1-2)
[2]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[3]  
[Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
[4]   DECOMPOSITION FORMULAS FOR SU(1,1) AND SU(2) LIE-ALGEBRAS AND THEIR APPLICATIONS IN QUANTUM OPTICS [J].
BAN, MS .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1993, 10 (08) :1347-1359
[5]   Resource Theory of Quantum States Out of Thermal Equilibrium [J].
Brandao, Fernando G. S. L. ;
Horodecki, Michal ;
Oppenheim, Jonathan ;
Renes, Joseph M. ;
Spekkens, Robert W. .
PHYSICAL REVIEW LETTERS, 2013, 111 (25)
[6]   Second law and Landauer principle far from equilibrium [J].
Esposito, M. ;
Van den Broeck, C. .
EPL, 2011, 95 (04)
[7]   The minimal work cost of information processing [J].
Faist, Philippe ;
Dupuis, Frederic ;
Oppenheim, Jonathan ;
Renner, Renato .
NATURE COMMUNICATIONS, 2015, 6
[8]   Entropy-energy inequalities for qudit states [J].
Figueroa, Armando ;
Lopez, Julio ;
Castanos, Octavio ;
Lopez-Pena, Ramon ;
Man'ko, Margarita A. ;
Man'ko, Vladimir I. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (06)
[9]   A general framework for non-equilibrium phenomena: The master equation and its formal consequences [J].
Gaveau, B ;
Schulman, LS .
PHYSICS LETTERS A, 1997, 229 (06) :347-353
[10]   Testing Entropic Inequalities for Superconducting Qudits [J].
Glushkov, Evgenii ;
Glushkova, Anastasiia ;
Man'ko, Vladimir I. .
JOURNAL OF RUSSIAN LASER RESEARCH, 2015, 36 (05) :448-457