Stability of Graphene Edges under Electron Beam: Equilibrium Energetics versus Dynamic Effects

被引:115
作者
Kotakoski, Jani [1 ,2 ]
Santos-Cottin, David [1 ]
Krasheninnikov, Arkady V. [1 ,3 ]
机构
[1] Univ Helsinki, Dept Phys, Helsinki 00014, Finland
[2] Univ Vienna, Dept Phys, A-1090 Vienna, Austria
[3] Aalto Univ, Dept Appl Phys, Aalto 00076, Finland
基金
芬兰科学院;
关键词
graphene; ribbon; edges; electron irradiation; stability; TOTAL-ENERGY CALCULATIONS; WAVE BASIS-SET; CARBON NANOTUBES; NANORIBBONS; NANOSTRUCTURES; SPECTROSCOPY; IRRADIATION; RESOLUTION; ZIGZAG;
D O I
10.1021/nn204148h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electron beam of a transmission electron microscope can be used to alter the morphology of graphene nanoribbons and create atomically sharp edges required for applications of graphene in nanoelectronics. Using density-functional-theory-based simulations, we study the radiation hardness of graphene edges and show that the response of the ribbons to irradiation Is not determined by the equilibrium energetics as assumed in previous experiments, but by kinetic effects associated with the dynamics of the edge atoms after impacts of energetic electrons. We report an unexpectedly high stability of armchair edges, comparable to that of pristine graphene, and demonstrate that the electron energy should be below similar to 50 keV to minimize the knock-on damage.
引用
收藏
页码:671 / 676
页数:6
相关论文
共 51 条
[1]   Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport [J].
Banhart, F ;
Li, JX ;
Krasheninnikov, AV .
PHYSICAL REVIEW B, 2005, 71 (24)
[2]   Irradiation effects in carbon nanostructures [J].
Banhart, F .
REPORTS ON PROGRESS IN PHYSICS, 1999, 62 (08) :1181-1221
[3]  
Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Graphene nano-ribbon electronics [J].
Chen, Zhihong ;
Lin, Yu-Ming ;
Rooks, Michael J. ;
Avouris, Phaedon .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02) :228-232
[7]  
Chuvilin A, 2010, NAT CHEM, V2, P450, DOI [10.1038/NCHEM.644, 10.1038/nchem.644]
[8]   From graphene constrictions to single carbon chains [J].
Chuvilin, Andrey ;
Meyer, Jannik C. ;
Algara-Siller, Gerardo ;
Kaiser, Ute .
NEW JOURNAL OF PHYSICS, 2009, 11
[9]   Controlling Edge Morphology in Graphene Layers Using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops [J].
Cruz-Silva, E. ;
Botello-Mendez, A. R. ;
Barnett, Z. M. ;
Jia, X. ;
Dresselhaus, M. S. ;
Terrones, H. ;
Terrones, M. ;
Sumpter, B. G. ;
Meunier, V. .
PHYSICAL REVIEW LETTERS, 2010, 105 (04)
[10]   Layer-by-Layer Removal of Graphene for Device Patterning [J].
Dimiev, Ayrat ;
Kosynkin, Dmitry V. ;
Sinitskii, Alexander ;
Slesarev, Alexander ;
Sun, Zhengzong ;
Tour, James M. .
SCIENCE, 2011, 331 (6021) :1168-1172