Liquid Rope Coiling

被引:128
作者
Ribe, Neil M. [1 ]
Habibi, Mehdi [2 ]
Bonn, Daniel [3 ,4 ]
机构
[1] Univ Paris 11, Univ Paris 06, CNRS, Lab FAST, F-91405 Orsay, France
[2] Inst Adv Studies Basic Sci IASBS, Dept Phys, Zanjan 451951159, Iran
[3] Ecole Normale Super, Lab Phys Stat, F-75005 Paris, France
[4] Univ Amsterdam, Van der Waals Zeeman Inst, Inst Phys, NL-1090 GL Amsterdam, Netherlands
来源
ANNUAL REVIEW OF FLUID MECHANICS, VOL 44 | 2012年 / 44卷
关键词
buckling instabilities; spiral waves; supercoiling; non-Newtonian fluids; Kaye effect; fluid-mechanical sewing machine; VISCOUS THREAD; JETS;
D O I
10.1146/annurev-fluid-120710-101244
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes (viscous, gravitational, inertio-gravitational, and inertial) corresponding to different balances among the three principal forces acting on the rope. The model further shows that the onset of coiling has distinct viscous, gravitational, and inertial modes that connect smoothly with the corresponding finite-amplitude regimes. In addition to steady coiling, slender liquid ropes falling onto surfaces can exhibit a remarkable variety of nonstationary behaviors, including propagating spiral waves of air bubbles, supercoiling, the leaping-shampoo (Kaye) effect for non-Newtonian fluids, and the fluid-mechanical sewing machine in which the rope leaves complex stitch patterns on a moving surface.
引用
收藏
页码:249 / 266
页数:18
相关论文
共 41 条
[1]   Noncoalescing drops [J].
Amarouchene, Y ;
Cristobal, G ;
Kellay, H .
PHYSICAL REVIEW LETTERS, 2001, 87 (20) :206104-1
[2]  
[Anonymous], 2009, Theory of Elasticity
[3]  
[Anonymous], 1993, Free liquid jets and films: hydrodynamics and rheology
[4]  
[Anonymous], 1969, P INT C THEOR APPL M
[5]   NUMERICAL ANALYSIS OF COSSERAT ROD AND STRING MODELS FOR VISCOUS JETS IN ROTATIONAL SPINNING PROCESSES [J].
Arne, Walter ;
Marheineke, Nicole ;
Meister, Andreas ;
Wegener, Raimund .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (10) :1941-1965
[6]  
Barnes G, 1959, AM J PHYS, V27, P112, DOI 10.1119/1.1934765
[7]  
Barnes G., 1958, American Journal of Physics, V26, P205, DOI [10.1119/1.1996110, DOI 10.1119/1.1996110]
[8]   The Kaye effect [J].
Binder, J. M. ;
Landig, A. J. .
EUROPEAN JOURNAL OF PHYSICS, 2009, 30 (06) :S115-S132
[9]  
Blount M., 2010, THESIS U CAMBRIDGE
[10]   The asymptotic structure of a slender dragged viscous thread [J].
Blount, Maurice J. ;
Lister, John R. .
JOURNAL OF FLUID MECHANICS, 2011, 674 :489-521