Spatial Atomic Layer Deposition of Zinc Oxide Thin Films

被引:96
作者
Illiberi, A. [1 ]
Roozeboom, F. [1 ,2 ]
Poodt, P. [1 ]
机构
[1] Netherlands Org Appl Sci Res TNO, NL-5600 HE Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Appl Phys, NL-5600 MB Eindhoven, Netherlands
关键词
thin films; zinc oxide; atomic layer deposition; deposition rate; industrial process; ZNO FILMS; TRANSPARENT; EMISSION; PLASMA; NANOPARTICLES;
D O I
10.1021/am2013097
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Zinc oxide thin films have been deposited at high growth rates (up to similar to 1 nm/s) by spatial atomic layer deposition technique at atmospheric pressure. Water has been used as oxidant for diethylzinc (DEZ) at deposition temperatures between 75 and 250 degrees C. The electrical, structural (crystallinity and morphology), and optical properties of the films have been analyzed by using Hall, four-point probe, X-ray diffraction, scanning electron microscopy, spectrophotometry, and photoluminescence, respectively. All the films have c-axis (100) preferential orientation, good crystalline quality and high transparency (similar to 85%) in the visible range. By varying the DEZ partial pressure, the electrical properties of ZnO can be controlled, ranging from heavily n-type conductive (with 4 mOhm.cm resistivity for 250 nm thickness) to insulating. Combining the high deposition rates with a precise control of functional properties (i.e., conductivity and transparency) of the films, the industrially scalable spatial ALD technique can become a disruptive manufacturing method for the ZnO-based industry.
引用
收藏
页码:268 / 272
页数:5
相关论文
共 35 条
[1]   Growing ZnO Nanocrystals on Polystyrene Nanospheres by Extra-Low-Temperature Atomic Layer Deposition [J].
Alessandri, I. ;
Zucca, M. ;
Ferroni, M. ;
Bontempi, E. ;
Depero, L. E. .
CRYSTAL GROWTH & DESIGN, 2009, 9 (03) :1258-1259
[2]   ANOMALOUS OPTICAL ABSORPTION LIMIT IN INSB [J].
BURSTEIN, E .
PHYSICAL REVIEW, 1954, 93 (03) :632-633
[3]   Defect control and its influence on the exciton emission of electrodeposited ZnO nanorods [J].
Cui, Jingbiao .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (28) :10385-10388
[4]   ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide [J].
Godlewski, M. ;
Guziewicz, E. ;
Luka, G. ;
Krajewski, T. ;
Lukasiewicz, M. ;
Wachnicki, L. ;
Wachnicka, A. ;
Kopalko, K. ;
Sarem, A. ;
Dalati, B. .
THIN SOLID FILMS, 2009, 518 (04) :1145-1148
[5]   Transparent conductors as solar energy materials: A panoramic review [J].
Granqvist, Claes G. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (17) :1529-1598
[6]   Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD [J].
Groenen, R ;
Löffler, J ;
Sommeling, PM ;
Linden, JL ;
Hamers, EAG ;
Schropp, REI ;
van de Sanden, MCM .
THIN SOLID FILMS, 2001, 392 (02) :226-230
[7]   Extremely low temperature growth of ZnO by atomic layer deposition [J].
Guziewicz, E. ;
Kowalik, I. A. ;
Godlewski, M. ;
Kopalko, K. ;
Osinniy, V. ;
Wojcik, A. ;
Yatsunenko, S. ;
Lusakowska, E. ;
Paszkowicz, W. ;
Guziewicz, M. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (03)
[8]   TEXTURED ALUMINUM-DOPED ZINC-OXIDE THIN-FILMS FROM ATMOSPHERIC-PRESSURE CHEMICAL-VAPOR DEPOSITION [J].
HU, JH ;
GORDON, RG .
JOURNAL OF APPLIED PHYSICS, 1992, 71 (02) :880-890
[9]   Industrial high-rate (∼14 nm/s) deposition of low resistive and transparent ZnOx:Al films on glass [J].
Illiberi, A. ;
Kniknie, B. ;
van Deelen, J. ;
Steijvers, H. L. A. H. ;
Habets, D. ;
Simons, P. J. P. M. ;
Janssen, A. C. ;
Beckers, E. H. A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (07) :1955-1959
[10]   Zinc oxide nanoparticles with defects [J].
Ischenko, V ;
Polarz, S ;
Grote, D ;
Stavarache, V ;
Fink, K ;
Driess, M .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (12) :1945-1954