Univalent Harmonic and Biharmonic Mappings with Integer Coefficients in Complex Quadratic Fields

被引:5
|
作者
Qiao, J. [1 ]
机构
[1] Hebei Univ, Dept Math, Baoding 071002, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Harmonic mapping; Biharmonic mapping; Univalence; Integer coefficient; Complex quadratic field; EQUATION;
D O I
10.1007/s40840-016-0346-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S denote the set of all univalent analytic functions on the unit disk . In 1946, B. Friedman found that the set of those functions which have integer coefficients consists of only nine functions. In 1985, authors determine all functions in whose coefficients are integers in complex quadratic fields. The first aim of this paper is to determine the class of univalent sense-preserving harmonic mappings with the coefficients , , , in a fixed complex quadratic field , where d is a positive square-free integer. Then, under the condition F is sense-preserving in and or F is sense-reversing in and , we determine all univalent biharmonic mappings , where a(n), b(n) is an element of Q(root di), n = 2,3, ....
引用
收藏
页码:1637 / 1646
页数:10
相关论文
共 50 条
  • [31] On Univalent Log-Harmonic Mappings
    Liu, Zhihong
    Ponnusamy, Saminathan
    FILOMAT, 2022, 36 (12) : 4211 - 4224
  • [32] The spherical metric and univalent harmonic mappings
    Abu Muhanna, Yusuf
    Ali, Rosihan M.
    Ponnusamy, Saminathan
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (04): : 703 - 716
  • [33] Univalent harmonic mappings and Hardy spaces
    Ebadian, Ali
    Azizi, Saman
    Yalcin, Sibel
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 284 - 292
  • [34] On harmonic univalent mappings with nonzero pole
    Bhowmik, Bappaditya
    Majee, Santana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [35] On the linear combinations of harmonic univalent mappings
    Wang, Zhi-Gang
    Liu, Zhi-Hong
    Li, Ying-Chun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) : 452 - 459
  • [36] Univalent σ-harmonic mappings:: Applications to composites
    Alessandrini, G
    Nesi, V
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (16) : 379 - 406
  • [37] On the Analytic Part of Univalent Harmonic Mappings
    Iigiz R. Kayumov
    Saminthan Ponnusamy
    Le Anh Xuan
    Complex Analysis and Operator Theory, 2018, 12 : 1291 - 1301
  • [38] UNIVALENT HARMONIC EXTERIOR AND RING MAPPINGS
    HENGARTNER, W
    SCHOBER, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) : 154 - 171
  • [39] CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS
    Nagpal, Sumit
    Ravichandran, V.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) : 567 - 592
  • [40] CONSTRUCTION OF UNIVALENT HARMONIC MAPPINGS AND THEIR CONVOLUTIONS
    Singla, Chinu
    Gupta, Singh
    Singh, Sukhjit
    MATEMATICKI VESNIK, 2024, 76 (03): : 174 - 184