Univalent Harmonic and Biharmonic Mappings with Integer Coefficients in Complex Quadratic Fields

被引:5
|
作者
Qiao, J. [1 ]
机构
[1] Hebei Univ, Dept Math, Baoding 071002, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Harmonic mapping; Biharmonic mapping; Univalence; Integer coefficient; Complex quadratic field; EQUATION;
D O I
10.1007/s40840-016-0346-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S denote the set of all univalent analytic functions on the unit disk . In 1946, B. Friedman found that the set of those functions which have integer coefficients consists of only nine functions. In 1985, authors determine all functions in whose coefficients are integers in complex quadratic fields. The first aim of this paper is to determine the class of univalent sense-preserving harmonic mappings with the coefficients , , , in a fixed complex quadratic field , where d is a positive square-free integer. Then, under the condition F is sense-preserving in and or F is sense-reversing in and , we determine all univalent biharmonic mappings , where a(n), b(n) is an element of Q(root di), n = 2,3, ....
引用
收藏
页码:1637 / 1646
页数:10
相关论文
共 50 条
  • [21] Univalent σ-harmonic mappings:: Connections with quasiconformal mappings
    Alessandrini, G
    Nesi, V
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1): : 197 - 215
  • [22] Univalent Σ-harmonic mappings: connections with quasiconformal mappings
    Giovanni Alessandrini
    Vincenzo Nesi
    Journal d’Analyse Mathématique, 2003, 90 : 197 - 215
  • [23] Boundary Behavior of Univalent Harmonic Mappings A Survey of Recent Boundary Behavior Results of Univalent Harmonic Mappings
    Bshouty, Daoud
    Lyzzaik, Abdallah
    CURRENT TOPICS IN PURE AND COMPUTATIONAL COMPLEX ANALYSIS, 2014, : 1 - 19
  • [24] COEFFICIENT CONDITIONS FOR HARMONIC UNIVALENT MAPPINGS AND HYPERGEOMETRIC MAPPINGS
    Bharanedhar, S. V.
    Ponnusamy, S.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (03) : 753 - 777
  • [25] Uniformly locally univalent harmonic mappings
    Saminathan Ponnusamy
    Jinjing Qiao
    Xiantao Wang
    Proceedings - Mathematical Sciences, 2018, 128
  • [26] On the Analytic Part of Univalent Harmonic Mappings
    Kayumov, Iigiz R.
    Ponnusamy, Saminthan
    Le Anh Xuan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (05) : 1291 - 1301
  • [27] Injectivity of sections of univalent harmonic mappings
    Li, Liulan
    Ponnusamy, Saminathan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 89 : 276 - 283
  • [28] CONVOLUTIONS OF A SUBCLASS OF HARMONIC UNIVALENT MAPPINGS
    Yasar, Elif
    Ozdemir, Ozge
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (02): : 353 - 359
  • [29] Uniformly locally univalent harmonic mappings
    Ponnusamy, Saminathan
    Qiao, Jinjing
    Wang, Xiantao
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (03):
  • [30] Univalent harmonic mappings with Blaschke dilatations
    Bshouty, D
    Hengartner, W
    MATHEMATICS AND MATHEMATICS EDUCATION, 2002, : 82 - 89