Integral representations of functions and Addison-type series for mathematical constants

被引:3
作者
Coffey, Mark W. [1 ]
机构
[1] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
关键词
Lerch zeta-function; Hurwitz zeta-function; Polylogarithm function; Dirichlet L-functions; Clausen functions; Generalized Somos constants; Glaisher Kinkelin constant; Kinkelin constant; Stieltjes constants; Integral representation; Series representation;
D O I
10.1016/j.jnt.2015.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize techniques of Addison to a vastly larger context. We obtain integral representations in terms of the first periodic Bernoulli polynomial for a number of important special functions including the Lerch zeta-, polylogarithm, Dirichlet L- and Clausen functions. These results then enable a variety of Addison-type series representations of functions. Moreover, we obtain integral representations and Addison-type series for a variety of mathematical constants. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:79 / 98
页数:20
相关论文
共 28 条
[1]  
Abramowitz M., 1964, Handbook of mathematical functions with formulas, graphs, and mathematical tables, DOI DOI 10.1119/1.15378
[2]   A SERIES REPRESENTATION FOR EULERS CONSTANT [J].
ADDISON, AW .
AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (07) :823-&
[3]  
Andrews GE., 1999, Special functions, encyclopedia of mathematics and its applications
[4]  
[Anonymous], 1985, The Riemann Zeta-Function: Theory and Applications
[5]  
[Anonymous], SEVERAL CONSTA UNPUB
[6]  
[Anonymous], 1927, Q J PURE APPL MATH
[7]  
[Anonymous], 1909, Q J PURE APPL MATH
[8]  
Barrow D.F., 1951, AM MATH MONTHLY, V58, P116
[9]   On the generalised gamma function [J].
Bendersky, L .
ACTA MATHEMATICA, 1933, 61 (01) :263-322
[10]  
Berndt B.C., 1999, CMS C P, V27, P19