Off-Gas Emission in CO2 Capture Process Using Aqueous Monoethanolamine Solution

被引:16
作者
Chanchey, Auttasit [2 ]
Saiwan, Chintana [2 ]
Supap, Teeradet [1 ]
Idem, Raphael [1 ]
Tontiwachwuthikul, Paitoon [1 ]
机构
[1] Int Test Ctr CO2 Capture, 3737 Wascana Pkwy, Regina, SK S4S 0A2, Canada
[2] Chulalongkorn Univ, Petr & Petrochem Coll, Bangkok 10330, Thailand
来源
10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES | 2011年 / 4卷
基金
加拿大自然科学与工程研究理事会;
关键词
off gas; emission; monoethanolamine; carbon dioxide; degradation;
D O I
10.1016/j.egypro.2011.01.081
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A comprehensive study was conducted to evaluate roles of O-2, SO2 (i.e. H2SO3), NO2 (i.e. HNO3), CO2 and temperature to off-gas emissions using conditions normally encountered in the CO2 capture process. Two possible pathways of radical induced oxidation of MEA in the presence/absence of H2SO3, HNO3, and CO2 were proposed to explain the release of NH3 as a major VOCs emission. In the presence of H2SO3, HNO3, and CO2, an increase of their concentrations decreased NH3 concentration, while the rest of VOCs (i.e. acetaldehyde, acetone, diethylamine, 2-butanol, methyl dl-lactate, methanol and ethanol) were found to be insignificantly affected. An increase of temperature was found to increase the concentration of all VOCs detected in this study. Based on mechanism analysis, the roles of H2SO3, HNO3, and CO2 were found to be that of cutting down the route to NH3 formation and instead induced the formation of formate and acetate heat stable salts in MEA solution. Additional liquid MEA analysis revealed that most NH3 was actually trapped and turned into NH4+ salts in MEA solution before it could be emitted as NH3 in the off-gas. (C) 2011 Published by Elsevier Ltd.
引用
收藏
页码:504 / 511
页数:8
相关论文
共 50 条
[31]   Absorber Model for CO2 Capture by Monoethanolamine [J].
Faramarzi, Leila ;
Kontogeorgis, Georgios M. ;
Michelsen, Michael L. ;
Thomsen, Kaj ;
Stenby, Erling H. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (08) :3751-3759
[32]   Modeling solubility of CO2 in aqueous monoethanolamine (MEA) solution using SAFT-HR equation of state [J].
Najafloo, Azam ;
Zarei, Samane .
FLUID PHASE EQUILIBRIA, 2018, 456 :25-32
[33]   Improving uncertainty evaluation of process models by using pedigree analysis. A case study on CO2 capture with monoethanolamine [J].
van der Spek, Mijndert ;
Ramirez, Andrea ;
Faaij, Andre .
COMPUTERS & CHEMICAL ENGINEERING, 2016, 85 :1-15
[34]   Monoethanolamine+2-methoxyethanol mixtures for CO2 capture: Density, viscosity and CO2 solubility [J].
Guo, Hui ;
Hui, Li ;
Shen, Shufeng .
JOURNAL OF CHEMICAL THERMODYNAMICS, 2019, 132 :155-163
[35]   CO2 capture by hydrate crystallization -: A potential solution for gas emission of steelmaking industry [J].
Duc, Nguyen Hong ;
Chauvy, Fabien ;
Herri, Jean-Michel .
ENERGY CONVERSION AND MANAGEMENT, 2007, 48 (04) :1313-1322
[36]   Understanding CO2 Capture Mechanisms in Aqueous Monoethanolamine via First Principles Simulations [J].
Han, Bo ;
Zhou, Chenggang ;
Wu, Jinping ;
Tempel, Daniel J. ;
Cheng, Hansong .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (06) :522-526
[37]   Experimental and rate-based modeling study of CO2 capture by aqueous monoethanolamine [J].
Li, Xiaofei ;
Wang, Shujuan ;
Chen, Changhe .
GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2014, 4 (04) :495-508
[38]   Chilled ammonia process for CO2 capture [J].
Darde, Victor ;
Thomsen, Kaj ;
van Well, Willy J. M. ;
Stenby, Erling H. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (02) :131-136
[39]   Chilled ammonia process for CO2 capture [J].
Darde, Victor ;
Thomsen, Kaj ;
van Well, Willy J. M. ;
Stenby, Erling H. .
GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01) :1035-1042
[40]   Reaction Mechanism of Monoethanolamine with CO2 in Aqueous Solution from Molecular Modeling [J].
Xie, Hong-Bin ;
Zhou, Yanzi ;
Zhang, Yingkai ;
Johnson, J. Karl .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (43) :11844-11852