An empirical likelihood approach to quantile regression with auxiliary information

被引:14
作者
Tang, Cheng Yong [1 ]
Leng, Chenlei [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore 117548, Singapore
关键词
Auxiliary information; Empirical likelihood; Estimating equations; Quantile regression; CONFIDENCE-INTERVALS; LINEAR-REGRESSION; INFERENCE; ESTIMATORS; MODELS;
D O I
10.1016/j.spl.2011.09.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider how to incorporate auxiliary information to improve quantile regression via empirical likelihood. We propose a novel framework and show that our approach yields more efficient estimates compared to those from the conventional quantile regression. The efficiency gain is quantified theoretically and demonstrated empirically via simulation studies. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 36
页数:8
相关论文
共 24 条
[1]   Generalized linear models incorporating population level information: an empirical-likelihood-based approach [J].
Chaudhuri, Sanjay ;
Handcock, Mark S. ;
Rendall, Michael S. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :311-328
[2]  
CHEN JH, 1993, BIOMETRIKA, V80, P107, DOI 10.1093/biomet/80.1.107
[3]   Improving semiparametric estimation by using surrogate data [J].
Chen, Song Xi ;
Leung, Denis H. Y. ;
Qin, Jing .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :803-823
[4]   A review on empirical likelihood methods for regression [J].
Chen, Song Xi ;
Van Keilegom, Ingrid .
TEST, 2009, 18 (03) :415-447
[5]  
Efron B., 1993, INTRO BOOTSTRAP, DOI 10.1007/978-1-4899-4541-9
[6]  
Fuller W. A., 2009, Sampling statistics
[7]   QUASI-LIKELIHOOD AND OPTIMAL ESTIMATION [J].
GODAMBE, VP ;
HEYDE, CC .
INTERNATIONAL STATISTICAL REVIEW, 1987, 55 (03) :231-244
[8]   LARGE SAMPLE PROPERTIES OF GENERALIZED-METHOD OF MOMENTS ESTIMATORS [J].
HANSEN, LP .
ECONOMETRICA, 1982, 50 (04) :1029-1054
[9]   A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs [J].
He, XM ;
Shao, QM .
ANNALS OF STATISTICS, 1996, 24 (06) :2608-2630
[10]  
Knight K, 1998, ANN STAT, V26, P755