Solar energy harvesting technologies for PV self-powered applications: A comprehensive review

被引:168
|
作者
Hao, Daning [1 ,2 ]
Qi, Lingfei [1 ,3 ]
Tairab, Alaeldin M. [1 ]
Ahmed, Ammar [5 ]
Azam, Ali [1 ]
Luo, Dabing [1 ]
Pan, Yajia [1 ]
Zhang, Zutao [1 ,4 ]
Yan, Jinyue [3 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Grad Sch Tangshan, Tangshan 063008, Peoples R China
[3] Malardalen Univ, Sch Business Soc & Energy, SE-72123 Vasteras, Sweden
[4] Southwest Jiaotong Univ, Yibin Res Inst, Yibin 644000, Peoples R China
[5] Northwestern Polytech Univ, Sch Mech Engn, Xian 710129, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar energy; Energy harvesting; PV Self-powered technologies; PV-Based hybrid energy systems; Self-powered applications; POINT TRACKING; SUN-TRACKING; MANAGEMENT-SYSTEM; GENERATION SYSTEMS; WIND ENERGY; DESIGN; PERFORMANCE; EFFICIENCY; MPPT; STRATEGY;
D O I
10.1016/j.renene.2022.02.066
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many key aspects of society, such as transport, housing and health care, have been significantly improved by the advent of a range of electricity applications, and the power generation for electricity applications has been a major field of research. Photovoltaic (PV) self-powered technologies are promising technologies for addressing applications' power supply challenges and alleviating conventional electricity load and environmental pollution. This study reviews solar energy harvesting (SEH) technologies for PV selfpowered applications. First, the PV power generation and scenarios of PV self-powered applications are analyzed. Second, analysis of system design for PV self-powered applications is presented. Third, key components for PV self-powered applications, including maximum power point tracking (MPPT) techniques and power management (PM) systems are discussed in detail. Furthermore, numerous PV selfpowered applications and utilizations of energy harvesting are summarized. Finally, some recommendations are proposed for further research. (c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:678 / 697
页数:20
相关论文
共 50 条
  • [21] Self-powered IoT Device based on Energy Harvesting for Remote Applications
    Kjellby, Rolf Arne
    Cenkeramaddi, Linga Reddy
    Johnsrud, Thor Eirik
    Lotveit, Svein E.
    Jevne, Geir
    Beferull-Lozano, B.
    Soumya, J.
    2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (ANTS), 2018,
  • [22] Advances in Blue Energy Fuels: Harvesting Energy from Ocean for Self-Powered Electrolysis
    Ock, Il Woo
    Yin, Junyi
    Wang, Shaolei
    Zhao, Xun
    Baik, Jeong Min
    Chen, Jun
    ADVANCED ENERGY MATERIALS, 2024,
  • [23] Energy Harvesting for Nanostructured Self-Powered Photodetectors
    Peng, Lin
    Hu, Linfeng
    Fang, Xiaosheng
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (18) : 2591 - 2610
  • [24] Energy Harvesting for Self-Powered Aerostructure Actuation
    Bryant, Matthew
    Pizzonia, Matthew
    Mehallow, Michael
    Garcia, Ephrahim
    ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2014, 2014, 9057
  • [25] Shape Memory Polymers for Body Motion Energy Harvesting and Self-Powered Mechanosensing
    Liu, Ruiyuan
    Kuang, Xiao
    Deng, Jianan
    Wang, Yi-Cheng
    Wang, Aurelia C.
    Ding, Wenbo
    Lai, Ying-Chih
    Chen, Jun
    Wang, Peihong
    Lin, Zhiqun
    Qi, H. Jerry
    Sun, Baoquan
    Wang, Zhong Lin
    ADVANCED MATERIALS, 2018, 30 (08)
  • [26] Enhanced variable reluctance energy harvesting for self-powered monitoring
    Zhang, Ying
    Wang, Wei
    Xie, Junxiao
    Lei, Yaguo
    Cao, Junyi
    Xu, Ye
    Bader, Sebastian
    Bowen, Chris
    Oelmann, Bengt
    APPLIED ENERGY, 2022, 321
  • [27] Towards a Green and Self-Powered Internet of Things Using Piezoelectric Energy Harvesting
    Shirvanimoghaddam, Mahyar
    Shirvanimoghaddam, Kamyar
    Abolhasani, Mohammad Mahdi
    Farhangi, Majid
    Barsari, Vahid Zahiri
    Liu, Hangyue
    Dohler, Mischa
    Naebe, Minoo
    IEEE ACCESS, 2019, 7 : 94533 - 94556
  • [28] Recent Advances towards Ocean Energy Harvesting and Self-Powered Applications Based on Triboelectric Nanogenerators
    Shen, Fan
    Li, Zhongjie
    Guo, Hengyu
    Yang, Zhengbao
    Wu, Hao
    Wang, Min
    Luo, Jun
    Xie, Shaorong
    Peng, Yan
    Pu, Huayan
    ADVANCED ELECTRONIC MATERIALS, 2021, 7 (09)
  • [29] Integration of Flexible Thermoelectric Energy Harvesting System for Self-Powered Sensor Applications
    Liang, Linlong
    Sheng, Pan
    Yao, Guang
    Huang, Zhenlong
    Lin, Yuan
    Jiang, Binbin
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (02) : 3656 - 3664
  • [30] A Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency
    Vodapally, Sai Nikhil
    Ali, Mohd Hasan
    ENERGIES, 2023, 16 (01)