Fundamental Representations and Algebraic Properties of Biquaternions or Complexified Quaternions

被引:32
作者
Sangwine, Stephen J. [1 ]
Ell, Todd A.
Le Bihan, Nicolas [2 ]
机构
[1] Univ Essex, Sch Comp Sci & Elect Engn, Colchester CO4 3SQ, Essex, England
[2] GIPSA Lab, Dept Images & Signal, F-38402 St Martin Dheres, France
基金
英国工程与自然科学研究理事会;
关键词
Quaternion; biquaternion;
D O I
10.1007/s00006-010-0263-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fundamental properties of biquaternions (complexified quaternions) are presented including several different representations, some of them new, and definitions of fundamental operations such as the scalar and vector parts, conjugates, semi-norms, polar forms, and inner products. The notation is consistent throughout, even between representations, providing a clear account of the many ways in which the component parts of a biquaternion may be manipulated algebraically.
引用
收藏
页码:607 / 636
页数:30
相关论文
共 44 条
  • [11] [Anonymous], GEOMETRIC ALGEBRA PR
  • [12] [Anonymous], ELEMENTARY TREATISE
  • [13] [Anonymous], PENGUIN DICT MATH
  • [14] [Anonymous], LINEAR QUATERNION SY
  • [15] [Anonymous], 1997, MATH ITS APPL
  • [16] Borowski EJ., 2002, COLLINS DICT MATH, V2nd
  • [17] Bouvier Alain, 2005, DICT MATH
  • [18] Coxeter H.S. M., 1946, The American Mathematical Monthly, V53, P136, DOI [10.1080/00029890.1946.11991647, DOI 10.1080/00029890.1946.11991647]
  • [19] Quaternionic electron theory: Geometry, algebra, and Dirac's spinors
    De Leo, S
    Rodrigues, WA
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (06) : 1707 - 1720
  • [20] Quaternion involutions and anti-involutions
    Ell, Todd A.
    Sangwine, Stephen J.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (01) : 137 - 143