Vertex clustering in random graphs via reversihle jump Markov chain Monte Carlo

被引:2
|
作者
Monni, Stefano [1 ]
Li, Hongzhe [1 ]
机构
[1] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Bayesian model selection; modules; networks; Wang Landau;
D O I
10.1198/106186008X321941
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Networks are a natural and effective tool to study relational data, in which observations are collected on pairs of units. The units are represented by nodes and their relations by edges. In biology, for example, proteins and their interactions may be the nodes and the edges of the network; in social science, the nodes and edges may be people and interpersonal relations. In this article we address the question of clustering vertices in networks as a way to uncover homogeneity patterns in data that enjoy a network representation. We use a mixture model for random graphs and propose a reversible jump Markov chain Monte Carlo algorithm to infer its parameters. Applications of the algorithm to one simulated dataset and three real datasets, which describe friendships among members of a university karate club, social interactions of dolphins, and gap junctions in the C. Elegans, are given.
引用
收藏
页码:388 / 409
页数:22
相关论文
共 50 条
  • [41] Parameter Identification in Degradation Modeling by Reversible-Jump Markov Chain Monte Carlo
    Zio, Enrico
    Zoia, Andrea
    IEEE TRANSACTIONS ON RELIABILITY, 2009, 58 (01) : 123 - 131
  • [42] Reversible-jump Markov chain Monte Carlo for quantitative trait loci mapping
    van de Ven, R
    GENETICS, 2004, 167 (02) : 1033 - 1035
  • [43] Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo
    Fazel, Mohamadreza
    Wester, Michael J.
    Mazloom-Farsibaf, Hanieh
    Meddens, Marjolein B. M.
    Eklund, Alexandra S.
    Schlichthaerle, Thomas
    Schueder, Florian
    Jungmann, Ralf
    Lidke, Keith A.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [44] Reversible jump Markov chain Monte Carlo signal detection in functional neuroimaging analysis
    Lukic, AS
    Wernick, MN
    Galatsanos, NP
    Yang, YY
    Strother, SC
    2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 and 2, 2004, : 868 - 871
  • [45] REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO METHOD FOR PARAMETER REDUCTION IN CLAIMS RESERVING
    Verrall, Richard J.
    Wuthrich, Mario V.
    NORTH AMERICAN ACTUARIAL JOURNAL, 2012, 16 (02) : 240 - 259
  • [46] A reversible jump Markov chain Monte Carlo algorithm for bacterial promoter motifs discovery
    Nicolas, Pierre
    Tocquet, Anne-Sophie
    Miele, Vincent
    Muri, Florence
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (03) : 651 - 667
  • [47] Modelling heterotachy in phylogenetic inference by reversible-jump Markov chain Monte Carlo
    Pagel, Mark
    Meade, Andrew
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1512) : 3955 - 3964
  • [48] Inverse of magnetic dipole field using a reversible jump Markov chain Monte Carlo
    Luo, X.
    Foss, C.
    20TH INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2013), 2013, : 134 - 140
  • [49] Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo
    Jun, Hyunggu
    Cho, Yongchae
    GEOPHYSICS AND GEOPHYSICAL EXPLORATION, 2022, 25 (04): : 252 - 265
  • [50] Bayesian volumetric calibration: an application of reversible jump Markov chain Monte Carlo methods
    Henderson, R
    Morton-Jones, T
    McKnespiey, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2000, 49 : 563 - 575