Vertex clustering in random graphs via reversihle jump Markov chain Monte Carlo

被引:2
|
作者
Monni, Stefano [1 ]
Li, Hongzhe [1 ]
机构
[1] Univ Penn, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
Bayesian model selection; modules; networks; Wang Landau;
D O I
10.1198/106186008X321941
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Networks are a natural and effective tool to study relational data, in which observations are collected on pairs of units. The units are represented by nodes and their relations by edges. In biology, for example, proteins and their interactions may be the nodes and the edges of the network; in social science, the nodes and edges may be people and interpersonal relations. In this article we address the question of clustering vertices in networks as a way to uncover homogeneity patterns in data that enjoy a network representation. We use a mixture model for random graphs and propose a reversible jump Markov chain Monte Carlo algorithm to infer its parameters. Applications of the algorithm to one simulated dataset and three real datasets, which describe friendships among members of a university karate club, social interactions of dolphins, and gap junctions in the C. Elegans, are given.
引用
收藏
页码:388 / 409
页数:22
相关论文
共 50 条
  • [31] Multiple Damage Identification Using the Reversible Jump Markov Chain Monte Carlo
    Tiboaca, Daniela
    Barthorpe, Robert J.
    Antoniadou, Ifigeneia
    Worden, Keith
    STRUCTURAL HEALTH MONITORING 2015: SYSTEM RELIABILITY FOR VERIFICATION AND IMPLEMENTATION, VOLS. 1 AND 2, 2015, : 2374 - 2382
  • [32] A reversible jump Markov chain Monte Carlo algorithm for analysis of functional neuroimages
    Lukic, AS
    Wernick, MN
    Galatsanos, NP
    Yang, YY
    Strother, SC
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 133 - 136
  • [33] Markov Chain Monte Carlo Combined with Deterministic Methods for Markov Random Field Optimization
    Kim, Wonsik
    Lee, Kyoung Mu
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 1406 - 1413
  • [34] Lossy source coding via Markov chain Monte Carlo
    Jalali, Shirin
    Weissman, Tsachy
    2008 INTERNATIONAL ZURICH SEMINAR ON COMMUNICATIONS, 2008, : 80 - 83
  • [35] Rate-Distortion via Markov Chain Monte Carlo
    Jalali, Shirin
    Weissman, Tsachy
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 852 - 856
  • [36] Computational complexity of Markov chain Monte Carlo methods for finite Markov random fields
    Frigessi, A
    Martinelli, F
    Stander, J
    BIOMETRIKA, 1997, 84 (01) : 1 - 18
  • [37] Recognizing chromospheric objects via Markov chain Monte Carlo
    Turmon, MJ
    Mukhtar, S
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL III, 1997, : 320 - 323
  • [38] An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations
    Farr, W. M.
    Mandel, I.
    Stevens, D.
    ROYAL SOCIETY OPEN SCIENCE, 2015, 2 (06):
  • [39] Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method
    Robert, CP
    Rydén, T
    Titterington, DM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 57 - 75
  • [40] Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo
    Mohamadreza Fazel
    Michael J. Wester
    Hanieh Mazloom-Farsibaf
    Marjolein B. M. Meddens
    Alexandra S. Eklund
    Thomas Schlichthaerle
    Florian Schueder
    Ralf Jungmann
    Keith A. Lidke
    Scientific Reports, 9