On the Laplacian spread of graphs

被引:25
作者
Zhai, Mingqing [1 ,2 ]
Shu, Jinlong [1 ]
Hong, Yuan [1 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200291, Peoples R China
[2] Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Spectral spread; Laplacian; Bicyclic graph;
D O I
10.1016/j.aml.2011.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Laplacian spread s(G) of a graph G is defined to be the difference between the largest eigenvalue and the second-smallest eigenvalue of the Laplacian matrix of G. Several upper bounds of Laplacian spread and corresponding extremal graphs are obtained in this paper. Particularly, if G is a connected graph with n(>= 5) vertices and m(n - 1 <= m <= n + 1) edges, then s(G) <= n - 1 with equality if and only if G is obtained from K-1,K- n-1 by adding m - n + 1 edges. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2097 / 2101
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 1985, Linear Multilinear Algebra, DOI [DOI 10.1080/03081088508817681, 10.1080/03081088508817681]
[2]   The Laplacian spread of unicyclic graphs [J].
Bao, Yan-Hong ;
Tan, Ying-Ying ;
Fan, Yi-Zheng .
APPLIED MATHEMATICS LETTERS, 2009, 22 (07) :1011-1015
[3]  
Cvetkovic D., 1995, Spectra of Graphs: Theory and Applications
[4]   An improved upper bound for Laplacian graph eigenvalues [J].
Das, KC .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 368 :269-278
[5]  
Fan YZ, 2008, DISCRETE MATH THEOR, V10, P79
[6]  
FIEDLER M, 1975, CZECH MATH J, V25, P619
[7]   THE LAPLACIAN SPECTRUM OF A GRAPH [J].
GRONE, R ;
MERRIS, R ;
SUNDER, VS .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1990, 11 (02) :218-238
[8]  
GUO JM, 2006, THESIS TONGJI U
[9]   On the Laplacian spectral radii of bicyclic graphs [J].
He, Chang-Xiang ;
Shao, Jia-Yu ;
He, Jin-Ling .
DISCRETE MATHEMATICS, 2008, 308 (24) :5981-5995
[10]   A note on Laplacian graph eigenvalues [J].
Merris, R .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) :33-35