Nano-Crystalline Li1.2Mn0.6Ni0.2O2 Prepared via Amorphous Complex Precursor and Its Electrochemical Performances as Cathode Material for Lithium-Ion Batteries

被引:16
作者
He, Xiangming [1 ,2 ]
Wang, Jixian [1 ]
Wang, Li [1 ,3 ]
Li, Jianjun [1 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[3] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
来源
MATERIALS | 2016年 / 9卷 / 08期
关键词
amorphous complex; nanoparticles; rate capability; Li-rich oxide; Lithium ion batteries; LI2MNO3; NANOPARTICLES; COMPOSITE; CAPACITY; NICKEL; MN; LI1.2NI0.2MN0.6O2; ELECTRODES; NANOWIRES; CHEMISTRY;
D O I
10.3390/ma9080661
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An amorphous complex precursor with uniform Mn/Ni cation distribution is attempted for preparing a nano-structured layered Li-rich oxide (Li1.2Mn0.6Ni0.2O2) cathode material, using diethylenetriaminepentaacetic acid (DTPA) as a chelating agent. The materials are characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical tests. The crystal structure of Li-rich materials is found to be closely related to synthesis temperature. As-obtained nano materials sintered at 850 degrees C for 10 h show an average size of 200 nm with a single crystal phase and good crystallinity. At a current density of 20 mA.g(-1), the specific discharge capacity reaches 221 mAh.g(-1) for the first cycle and the capacity retention is 81% over 50 cycles. Even at a current density of 1000 mA.g(-1), the capacity is as high as 118 mAh.g(-1). The enhanced rate capability can be ascribed to the nano-sized morphology and good crystal structure.
引用
收藏
页数:12
相关论文
共 53 条
[1]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[2]   Mitigation of Layered to Spinel Conversion of a Li-Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries [J].
Ates, Mehmet Nurullah ;
Jia, Qingying ;
Shah, Ankita ;
Busnaina, Ahmed ;
Mukerjee, Sanjeev ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A290-A301
[3]   Local Structure of Layered Oxide Electrode Materials for Lithium-Ion Batteries [J].
Bareno, J. ;
Lei, C. H. ;
Wen, J. G. ;
Kang, S-H ;
Petrov, I. ;
Abraham, D. P. .
ADVANCED MATERIALS, 2010, 22 (10) :1122-1127
[4]   Chemically induced magnetism and magnetoresistance in La0.8Sr1.2Mn0.6Rh0.4O4 [J].
Battle, PD ;
Bell, AMT ;
Blundell, SJ ;
Coldea, AI ;
Cussen, EJ ;
Hardy, GC ;
Marshall, IM ;
Rosseinsky, MJ ;
Steer, CA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (31) :7610-7615
[5]   Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life [J].
Cao, Yuliang ;
Xiao, Lifen ;
Wang, Wei ;
Choi, Daiwon ;
Nie, Zimin ;
Yu, Jianguo ;
Saraf, Laxmikant V. ;
Yang, Zhenguo ;
Liu, Jun .
ADVANCED MATERIALS, 2011, 23 (28) :3155-+
[6]   Recent Progress in Advanced Materials for Lithium Ion Batteries [J].
Chen, Jiajun .
MATERIALS, 2013, 6 (01) :156-183
[7]   Synthesis and characterization of Li[Ni0.41Li0.08Mn0.51]O2 nanoplates for Li battery cathode material [J].
Cho, Jaephil ;
Kim, Yoojin ;
Kim, Min Gyu .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (07) :3192-3196
[8]  
de la Cruz RMG, 2001, APPL CATAL B-ENVIRON, V33, P45
[9]   Evolution of Strategies for Modern Rechargeable Batteries [J].
Goodenough, John B. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1053-1061
[10]   Novel synthesis of layered LiNi1/2Mn1/2O2 as cathode material for lithium rechargeable cells [J].
Gopukumar, S ;
Chung, KY ;
Kim, KB .
ELECTROCHIMICA ACTA, 2004, 49 (05) :803-810