Deep-learning-based short-term electricity load forecasting: A real case application

被引:69
作者
Yazici, Ibrahim [1 ]
Beyca, Omer Faruk [1 ]
Delen, Dursun [2 ,3 ]
机构
[1] Istanbul Tech Univ, Fac Engn, Dept Ind Engn, TR-34367 Istanbul, Turkey
[2] Oklahoma State Univ, Spears Sch Business, Dept Management Sci & Informat Syst, Stillwater, OK 74078 USA
[3] Ibn Haldun Univ, Sch Business, Istanbul, Turkey
关键词
Data science; Time-series forecasting; Short term electricity demand prediction; Deep learning; One-dimensional CNN; TIME-SERIES; NEURAL-NETWORKS; WAVELET TRANSFORM; POWER LOAD; MODEL; DEMAND; OPTIMIZATION; REGRESSION; ALGORITHM; VECTOR;
D O I
10.1016/j.engappai.2021.104645
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The rising popularity of deep learning can largely be attributed to the big data phenomenon, the surge in the development of new and novel deep neural network architectures, and the advent of powerful computational innovations. However, the application of deep neural networks is rare for time series problems when compared to other application areas. Short-term load forecasting, a typical and difficult time series problem, is considered as the application domain in this study. One-dimensional Convolutional Neural Networks (CNNs) use is rare in time series forecasting problems when compared to Long Short Term Memory (LSTM) and Gated Recurrent Unit (GRU), and the efficiency of CNN has been rather remarkable for pattern extraction. Hence, a new method that uses one-dimensional CNNs based on Video Pixel Networks (VPNs) in this study, in which the gating mechanism of Multiplicative Units of the VPNs is modified in some sense, for short term load forecasting. Specifically, the proposed one-dimensional CNNs, LSTM and GRU variants are applied to real-world electricity load data for 1-hour-ahead and 24-hour-ahead prediction tasks which they are the main concerns for the electricity provider firms for short term load forecasting. Statistical tests were conducted to spot the significance of the performance differences in analyses for which ten ensemble predictions of each method were experimented. According to the results of the comparative analyses, the proposed one-dimensional CNN model yielded the best result in total with 2.21% mean absolute percentage error for 24-h ahead predicitions. On the other hand, not a noteworthy difference between the methods was spotted even the proposed one-dimensional CNN method yielded the best results with approximately 1% mean absolute percentage error for 1-h ahead predictions.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Diving Deep into Short-Term Electricity Load Forecasting: Comparative Analysis and a Novel Framework
    Ullah, Fath U. Min
    Khan, Noman
    Hussain, Tanveer
    Lee, Mi Young
    Baik, Sung Wook
    MATHEMATICS, 2021, 9 (06)
  • [42] A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms
    Hou, Tingting
    Fang, Rengcun
    Tang, Jinrui
    Ge, Ganheng
    Yang, Dongjun
    Liu, Jianchao
    Zhang, Wei
    ENERGIES, 2021, 14 (22)
  • [43] Short-term electrical load forecasting through heuristic configuration of regularized deep neural network
    Haque, Ashraful
    Rahman, Saifur
    APPLIED SOFT COMPUTING, 2022, 122
  • [44] Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application
    Khan, Salahuddin
    SUSTAINABILITY, 2023, 15 (16)
  • [45] Forecasting Short-Term Electricity Load Using Validated Ensemble Learning
    Sankalpa, Chatum
    Kittipiyakul, Somsak
    Laitrakun, Seksan
    ENERGIES, 2022, 15 (22)
  • [46] A modified deep residual network for short-term load forecasting
    Kondaiah, V. Y.
    Saravanan, B.
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [47] Application of GMDH to Short-term Load Forecasting
    Xu, Hongya
    Dong, Yao
    Wu, Jie
    Zhao, Weigang
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL III, 2010, : 338 - 341
  • [48] Short-Term Load Forecasting of Integrated Energy Systems Based on Deep Learning
    Huan, Jiajia
    Hong, Haifeng
    Pan, Xianxian
    Sui, Yu
    Zhang, Xiaohui
    Jiang, Xuedong
    Wang, Chaoqun
    2020 5TH ASIA CONFERENCE ON POWER AND ELECTRICAL ENGINEERING (ACPEE 2020), 2020, : 16 - 20
  • [49] Application of GMDH to Short-Term Load Forecasting
    Xu, Hongya
    Dong, Yao
    Wu, Jie
    Zhao, Weigang
    ADVANCES IN INTELLIGENT SYSTEMS, 2012, 138 : 27 - +
  • [50] Deep Learning-Based Approach for Time Series Forecasting with Application to Electricity Load
    Torres, J. F.
    Fernandez, A. M.
    Troncoso, A.
    Martinez-Alvarez, F.
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 203 - 212