Discrete compactness for p and hp 2D edge finite elements

被引:12
作者
Boffi, D
Demkowicz, L
Costabel, M
机构
[1] Univ Pavia, Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[2] Univ Texas, Texas Inst Compuat & Appl Math, Austin, TX 78712 USA
[3] IRMAR, Inst Math, F-35042 Rennes, France
关键词
Maxwell's equations; hp finite elements; discrete compactness;
D O I
10.1142/S0218202503003070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the hp edge finite element approximation of the Maxwell cavity eigenproblem. We address the main arguments for the proof of the discrete compactness property. The proof is based on a conjectured L-2 stability estimate for the involved polynomial spaces which has been verified numerically for p less than or equal to 15 and illustrated with the corresponding one dimensional model problem.
引用
收藏
页码:1673 / 1687
页数:15
相关论文
共 17 条
[1]  
Anselone P. M., 1971, Collectively compact operator approximation theory and applications to integral equations
[2]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[3]   A note on the de Rham complex and a discrete compactness property [J].
Boffi, D .
APPLIED MATHEMATICS LETTERS, 2001, 14 (01) :33-38
[4]  
Boffi D, 2000, NUMER MATH, V87, P229, DOI 10.1007/S002110000182
[5]  
BOFFI D, UNPUB
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]   On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems [J].
Caorsi, S ;
Fernandes, P ;
Raffetto, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (02) :580-607
[8]  
CHATELIN F., 1983, Spectral Approximation of Linear Operators
[9]   Singularities of electromagnetic fields in polyhedral domains [J].
Costabel, M ;
Dauge, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 151 (03) :221-276
[10]  
DEMKOWICZ L, 2001, 0111J TICAM