Single-Image Super-Resolution for Remote Sensing Images Using a Deep Generative Adversarial Network With Local and Global Attention Mechanisms

被引:26
作者
Li, Yadong [1 ]
Mavromatis, Sebastien [2 ]
Zhang, Feng [1 ]
Du, Zhenhong [1 ]
Sequeira, Jean [2 ]
Wang, Zhongyi [3 ]
Zhao, Xianwei [3 ]
Liu, Renyi [1 ]
机构
[1] Zhejiang Univ, Sch Earth Sci, Zhejiang Prov Lab Geog Informat Syst GIS, Hangzhou 310058, Peoples R China
[2] Aix Marseille Univ, French Natl Ctr Sci Res CNRS, Lab Comp Sci & Syst LIS, F-13001 Marseille, France
[3] Huawei Technol Co Ltd, City Intelligence Cloud & AI, Shenzhen 518129, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
关键词
Remote sensing; Feature extraction; Image reconstruction; Spatial resolution; Signal processing algorithms; Biological system modeling; Generative adversarial networks; Convolutional neural networks (CNNs); generative adversarial network (GAN); local and global attention module; remote sensing; single-image super super-resolution (SISR); RECONSTRUCTION;
D O I
10.1109/TGRS.2021.3093043
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Super-resolution (SR) technology is an important way to improve spatial resolution under the condition of sensor hardware limitations. With the development of deep learning (DL), some DL-based SR models have achieved state-of-the-art performance, especially the convolutional neural network (CNN). However, considering that remote sensing images usually contain a variety of ground scenes and objects with different scales, orientations, and spectral characteristics, previous works usually treat important and unnecessary features equally or only apply different weights in the local receptive field, which ignores long-range dependencies; it is still a challenging task to exploit features on different levels and reconstruct images with realistic details. To address these problems, an attention-based generative adversarial network (SRAGAN) is proposed in this article, which applies both local and global attention mechanisms. Specifically, we apply local attention in the SR model to focus on structural components of the earth's surface that require more attention, and global attention is used to capture long-range interdependencies in the channel and spatial dimensions to further refine details. To optimize the adversarial learning process, we also use local and global attentions in the discriminator model to enhance the discriminative ability and apply the gradient penalty in the form of hinge loss and loss function that combines L1 pixel loss, L1 perceptual loss, and relativistic adversarial loss to promote rich details. The experiments show that SRAGAN can achieve performance improvements and reconstruct better details compared with current state-of-the-art SR methods. A series of ablation investigations and model analyses validate the efficiency and effectiveness of our method.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Pathological image super-resolution using mix-attention generative adversarial network
    Chen, Zhineng
    Wang, Jing
    Jia, Caiyan
    Ye, Xiongjun
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (01) : 149 - 159
  • [22] Deep Residual Dual-Attention Network for Super-Resolution Reconstruction of Remote Sensing Images
    Huang, Bo
    He, Boyong
    Wu, Liaoni
    Guo, Zhiming
    REMOTE SENSING, 2021, 13 (14)
  • [23] Small Object Detection in Remote Sensing Images Based on Super-Resolution with Auxiliary Generative Adversarial Networks
    Courtrai, Luc
    Minh-Tan Pham
    Lefevre, Sebastien
    REMOTE SENSING, 2020, 12 (19) : 1 - 19
  • [24] Super-Resolution Reconstruction of Remote Sensing Images of the China-Myanmar Pipeline Based on Generative Adversarial Network
    Jiang, Yuanliang
    Ren, Qingying
    Ren, Yuan
    Liu, Haipeng
    Dong, Shaohua
    Ma, Yundong
    SUSTAINABILITY, 2023, 15 (17)
  • [25] Remote Sensing Image Super-Resolution via Mixed High-Order Attention Network
    Zhang, Dongyang
    Shao, Jie
    Li, Xinyao
    Shen, Heng Tao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06): : 5183 - 5196
  • [26] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [27] MSAGAN: A New Super-Resolution Algorithm for Multispectral Remote Sensing Image Based on a Multiscale Attention GAN Network
    Wang, Chunyang
    Zhang, Xian
    Yang, Wei
    Li, Xingwang
    Lu, Bibo
    Wang, Jianlong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [28] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [29] Remote-sensing image super-resolution using classifier-based generative adversarial networks
    Yue, Haosong
    Cheng, Jiaxiang
    Liu, Zhong
    Chen, Weihai
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (04)
  • [30] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679