Fast and robust quantum computation with ionic Wigner crystals

被引:8
作者
Baltrusch, J. D. [1 ,2 ,3 ]
Negretti, A. [1 ]
Taylor, J. M. [4 ,5 ]
Calarco, T. [1 ,6 ,7 ]
机构
[1] Univ Ulm, Inst Quantum Informat Proc, D-89069 Ulm, Germany
[2] Univ Autonoma Barcelona, Grp Opt, E-08193 Bellaterra, Barcelona, Spain
[3] Univ Saarland, D-66041 Saarbrucken, Germany
[4] NIST, College Pk, MD 20742 USA
[5] Joint Quantum Inst, College Pk, MD 20742 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[7] ITAMP, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 04期
关键词
TRAP; COMPUTER; IMPLEMENTATION; ARCHITECTURE; PLASMAS; ATOM;
D O I
10.1103/PhysRevA.83.042319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a detailed analysis of the modulated-carrier quantum phase gate implemented withWigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze the situation in which the cyclotron (omega(c)) and the crystal rotation (omega(r)) frequencies do not fulfill the condition omega(c) = 2 omega(r). It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Physical Realization of Measurement Based Quantum Computation
    Kashif, Muhammad
    Al-Kuwari, Saif
    IEEE ACCESS, 2023, 11 : 90105 - 90130
  • [42] Fermionic One-Way Quantum Computation
    Cao Xin
    Shang Yun
    CHINESE PHYSICS LETTERS, 2014, 31 (11)
  • [43] Identifying Phases of Quantum Many-Body Systems That Are Universal for Quantum Computation
    Doherty, Andrew C.
    Bartlett, Stephen D.
    PHYSICAL REVIEW LETTERS, 2009, 103 (02)
  • [44] A Coding Theorem for Bipartite Unitaries in Distributed Quantum Computation
    Wakakuwa, Eyuri
    Soeda, Akihito
    Murao, Mio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 5372 - 5403
  • [45] Distributed quantum computation with arbitrarily poor photon detection
    Matsuzaki, Yuichiro
    Benjamin, Simon C.
    Fitzsimons, Joseph
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [46] Quantum computation with logical gates between hot systems
    Riera-Sabat, Ferran
    Sekatski, Pavel
    Dur, Wolfgang
    PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [47] Verifiable delegated quantum computation with χ-type entangled states
    Tan, Xiaoqing
    Zhang, Xiaoqian
    Song, Tingting
    COMPUTER STANDARDS & INTERFACES, 2017, 54 : 36 - 40
  • [48] A perspective on scaling up quantum computation with molecular spins
    Carretta, S.
    Zueco, D.
    Chiesa, A.
    Gomez-Leon, A.
    Luis, F.
    APPLIED PHYSICS LETTERS, 2021, 118 (24)
  • [49] Deterministic photonic quantum computation in a synthetic time dimension
    Bartlett, Ben
    Dutt, Avik
    Fan, Shanhui
    OPTICA, 2021, 8 (12): : 1515 - 1523
  • [50] Measurement-Based Quantum Computation with Trapped Ions
    Lanyon, B. P.
    Jurcevic, P.
    Zwerger, M.
    Hempel, C.
    Martinez, E. A.
    Duer, W.
    Briegel, H. J.
    Blatt, R.
    Roos, C. F.
    PHYSICAL REVIEW LETTERS, 2013, 111 (21)