Fast and robust quantum computation with ionic Wigner crystals

被引:8
作者
Baltrusch, J. D. [1 ,2 ,3 ]
Negretti, A. [1 ]
Taylor, J. M. [4 ,5 ]
Calarco, T. [1 ,6 ,7 ]
机构
[1] Univ Ulm, Inst Quantum Informat Proc, D-89069 Ulm, Germany
[2] Univ Autonoma Barcelona, Grp Opt, E-08193 Bellaterra, Barcelona, Spain
[3] Univ Saarland, D-66041 Saarbrucken, Germany
[4] NIST, College Pk, MD 20742 USA
[5] Joint Quantum Inst, College Pk, MD 20742 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[7] ITAMP, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 04期
关键词
TRAP; COMPUTER; IMPLEMENTATION; ARCHITECTURE; PLASMAS; ATOM;
D O I
10.1103/PhysRevA.83.042319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a detailed analysis of the modulated-carrier quantum phase gate implemented withWigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze the situation in which the cyclotron (omega(c)) and the crystal rotation (omega(r)) frequencies do not fulfill the condition omega(c) = 2 omega(r). It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Physical Realization of Measurement Based Quantum Computation
    Kashif, Muhammad
    Al-Kuwari, Saif
    [J]. IEEE ACCESS, 2023, 11 : 90105 - 90130
  • [42] Fermionic One-Way Quantum Computation
    Cao Xin
    Shang Yun
    [J]. CHINESE PHYSICS LETTERS, 2014, 31 (11)
  • [43] Identifying Phases of Quantum Many-Body Systems That Are Universal for Quantum Computation
    Doherty, Andrew C.
    Bartlett, Stephen D.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (02)
  • [44] A Coding Theorem for Bipartite Unitaries in Distributed Quantum Computation
    Wakakuwa, Eyuri
    Soeda, Akihito
    Murao, Mio
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (08) : 5372 - 5403
  • [45] Distributed quantum computation with arbitrarily poor photon detection
    Matsuzaki, Yuichiro
    Benjamin, Simon C.
    Fitzsimons, Joseph
    [J]. PHYSICAL REVIEW A, 2010, 82 (01):
  • [46] Quantum computation with logical gates between hot systems
    Riera-Sabat, Ferran
    Sekatski, Pavel
    Dur, Wolfgang
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (03):
  • [47] Verifiable delegated quantum computation with χ-type entangled states
    Tan, Xiaoqing
    Zhang, Xiaoqian
    Song, Tingting
    [J]. COMPUTER STANDARDS & INTERFACES, 2017, 54 : 36 - 40
  • [48] A perspective on scaling up quantum computation with molecular spins
    Carretta, S.
    Zueco, D.
    Chiesa, A.
    Gomez-Leon, A.
    Luis, F.
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (24)
  • [49] Deterministic photonic quantum computation in a synthetic time dimension
    Bartlett, Ben
    Dutt, Avik
    Fan, Shanhui
    [J]. OPTICA, 2021, 8 (12): : 1515 - 1523
  • [50] Measurement-Based Quantum Computation with Trapped Ions
    Lanyon, B. P.
    Jurcevic, P.
    Zwerger, M.
    Hempel, C.
    Martinez, E. A.
    Duer, W.
    Briegel, H. J.
    Blatt, R.
    Roos, C. F.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (21)