Fast and robust quantum computation with ionic Wigner crystals

被引:8
作者
Baltrusch, J. D. [1 ,2 ,3 ]
Negretti, A. [1 ]
Taylor, J. M. [4 ,5 ]
Calarco, T. [1 ,6 ,7 ]
机构
[1] Univ Ulm, Inst Quantum Informat Proc, D-89069 Ulm, Germany
[2] Univ Autonoma Barcelona, Grp Opt, E-08193 Bellaterra, Barcelona, Spain
[3] Univ Saarland, D-66041 Saarbrucken, Germany
[4] NIST, College Pk, MD 20742 USA
[5] Joint Quantum Inst, College Pk, MD 20742 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[7] ITAMP, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 04期
关键词
TRAP; COMPUTER; IMPLEMENTATION; ARCHITECTURE; PLASMAS; ATOM;
D O I
10.1103/PhysRevA.83.042319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a detailed analysis of the modulated-carrier quantum phase gate implemented withWigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze the situation in which the cyclotron (omega(c)) and the crystal rotation (omega(r)) frequencies do not fulfill the condition omega(c) = 2 omega(r). It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Robust Quantum State Transfer in Random Unpolarized Spin Chains
    Yao, N. Y.
    Jiang, L.
    Gorshkov, A. V.
    Gong, Z. -X.
    Zhai, A.
    Duan, L. -M.
    Lukin, M. D.
    PHYSICAL REVIEW LETTERS, 2011, 106 (04)
  • [32] Quantum One Go Computation and the Physical Computation Level of Biological Information Processing
    Castagnoli, Giuseppe
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (02) : 304 - 315
  • [33] Entangling gates for trapped-ion quantum computation and quantum simulation
    Cai, Zhengyang
    Luan, Chun -Yang
    Ou, Lingfeng
    Tu, Hengchao
    Yin, Zihan
    Zhang, Jing -Ning
    Kim, Kihwan
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2023, 82 (09) : 882 - 900
  • [34] Boosting Photonic Quantum Computation with Moderate Nonlinearity
    Pick, A.
    Matekole, E. S.
    Aqua, Z.
    Guendelman, G.
    Firstenberg, O.
    Dowling, J. P.
    Dayan, B.
    PHYSICAL REVIEW APPLIED, 2021, 15 (05)
  • [35] Microfabricated Penning trap for quantum computation and simulation
    Hrmo, Pavel
    Jain, Shreyans
    Sagesser, Tobias
    Kienzler, Daniel
    Home, Jonathan
    2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2022), 2022, : 807 - 808
  • [36] Compiler Management of Communication and Parallelism for Quantum Computation
    Heckey, Jeff
    Patil, Shruti
    JavadiAbhari, Ali
    Holmes, Adam
    Kudrow, Daniel
    Brown, Kenneth R.
    Franklin, Diana
    Chong, Frederic T.
    Martonosi, Margaret
    ACM SIGPLAN NOTICES, 2015, 50 (04) : 445 - 456
  • [37] On the theory of quantum and towards practical computation: A review
    Kudelic, Robert
    JOURNAL OF COMPUTATIONAL SCIENCE, 2024, 83
  • [38] Continuous-Variable Blind Quantum Computation
    Morimae, Tomoyuki
    PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [39] Quantum computation with classical light: The Deutsch Algorithm
    Perez-Garcia, Benjamin
    Francis, Jason
    McLaren, Melanie
    Hernandez-Aranda, Raul I.
    Forbes, Andrew
    Konrad, Thomas
    PHYSICS LETTERS A, 2015, 379 (28-29) : 1675 - 1680
  • [40] Universal Continuous Variable Quantum Computation in the Micromaser
    Wagner, Rob C.
    Everitt, Mark S.
    Kendon, Viv M.
    Jones, Martin L.
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2010, 6079 : 152 - +