Fast and robust quantum computation with ionic Wigner crystals

被引:8
作者
Baltrusch, J. D. [1 ,2 ,3 ]
Negretti, A. [1 ]
Taylor, J. M. [4 ,5 ]
Calarco, T. [1 ,6 ,7 ]
机构
[1] Univ Ulm, Inst Quantum Informat Proc, D-89069 Ulm, Germany
[2] Univ Autonoma Barcelona, Grp Opt, E-08193 Bellaterra, Barcelona, Spain
[3] Univ Saarland, D-66041 Saarbrucken, Germany
[4] NIST, College Pk, MD 20742 USA
[5] Joint Quantum Inst, College Pk, MD 20742 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[7] ITAMP, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 04期
关键词
TRAP; COMPUTER; IMPLEMENTATION; ARCHITECTURE; PLASMAS; ATOM;
D O I
10.1103/PhysRevA.83.042319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a detailed analysis of the modulated-carrier quantum phase gate implemented withWigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze the situation in which the cyclotron (omega(c)) and the crystal rotation (omega(r)) frequencies do not fulfill the condition omega(c) = 2 omega(r). It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Quantum Computation using Arrays of N Polar Molecules in Pendular States
    Wei, Qi
    Cao, Yudong
    Kais, Sabre
    Friedrich, Bretislav
    Herschbach, Dudley
    CHEMPHYSCHEM, 2016, 17 (22) : 3714 - 3722
  • [22] Quantum computation and entangled state generation through a cavity output process
    Xia, Yan
    Hu, Chun
    Song, Jie
    Song, He-Shan
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2011, 9 (05): : 1255 - 1260
  • [23] A Quantum Computation Model for Molecular Nanomagnets
    Cirillo, Giovanni Amedeo
    Turvani, Giovanna
    Graziano, Mariagrazia
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2019, 18 : 1027 - 1039
  • [24] Digital-analog quantum computation
    Parra-Rodriguez, Adrian
    Lougovski, Pavel
    Lamata, Lucas
    Solano, Enrique
    Sanz, Mikel
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [25] Quantum computation with doped silicon cavities
    Abanto, M.
    Davidovich, L.
    Koiller, Belita
    de Matos Filho, R. L.
    PHYSICAL REVIEW B, 2010, 81 (08)
  • [26] Bounds on Instantaneous Nonlocal Quantum Computation
    Gonzales, Alvin
    Chitambar, Eric
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2951 - 2963
  • [27] Geometric Quantum Computation with Shortcuts to Adiabaticity
    Du, Yanxiong
    Liang, Zhentao
    Yan, Hui
    Zhu, Shiliang
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (09)
  • [28] Quantum game simulator, using the circuit model of quantum computation
    Vlachos, Panagiotis
    Karafyllidis, Ioannis G.
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (10) : 1990 - 1998
  • [29] Fast ion swapping for quantum-information processing
    Kaufmann, H.
    Ruster, T.
    Schmiegelow, C. T.
    Luda, M. A.
    Kaushal, V.
    Schulz, J.
    von Lindenfels, D.
    Schmidt-Kaler, F.
    Poschinger, U. G.
    PHYSICAL REVIEW A, 2017, 95 (05)
  • [30] Advances in Quantum Computation and Quantum Technologies: A Design Automation Perspective
    De Micheli, Giovanni
    Jiang, Jie-Hong R.
    Rand, Robert
    Smith, Kaitlin
    Soeken, Mathias
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2022, 12 (03) : 584 - 601