A multivariate finite mixture latent trajectory model with application to dementia studies

被引:16
作者
Lai, Dongbing [1 ]
Xu, Huiping [2 ,3 ]
Koller, Daniel [1 ]
Foroud, Tatiana [1 ]
Gao, Sujuan [2 ,3 ]
机构
[1] Indiana Univ Sch Med, Dept Med & Mol Genet, Indianapolis, IN 46202 USA
[2] Indiana Univ, Sch Publ Hlth, Dept Biostat, Indianapolis, IN 46204 USA
[3] Sch Med, Indianapolis, IN USA
基金
美国国家卫生研究院;
关键词
Multivariate finite mixture latent trajectory; cognitive decline; dementia; DATA SET UDS; ALZHEIMERS-DISEASE; DEVELOPMENTAL TRAJECTORIES; APOLIPOPROTEIN-E; JOINT ANALYSIS; TYPE-4; ALLELE; DEGENERATION; DIAGNOSIS;
D O I
10.1080/02664763.2016.1141181
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Dementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of multiple neuropsychological tests aimed to measure patients' decline across a number of cognitive domains. We propose a multivariate finite mixture latent trajectory model to identify distinct longitudinal patterns of cognitive decline simultaneously in multiple cognitive domains, each of which is measured by multiple neuropsychological tests. EM algorithm is used for parameter estimation and posterior probabilities are used to predict latent class membership. We present results of a simulation study demonstrating adequate performance of our proposed approach and apply our model to the Uniform Data Set from the National Alzheimer's Coordinating Center to identify cognitive decline patterns among dementia patients.
引用
收藏
页码:2503 / 2523
页数:21
相关论文
共 39 条
[1]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[2]  
[Anonymous], 2004, FINITE MIXTURE MODEL
[3]   GENE DOSE OF APOLIPOPROTEIN-E TYPE-4 ALLELE AND THE RISK OF ALZHEIMERS-DISEASE IN LATE-ONSET FAMILIES [J].
CORDER, EH ;
SAUNDERS, AM ;
STRITTMATTER, WJ ;
SCHMECHEL, DE ;
GASKELL, PC ;
SMALL, GW ;
ROSES, AD ;
HAINES, JL ;
PERICAKVANCE, MA .
SCIENCE, 1993, 261 (5123) :921-923
[4]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[5]   A mixture model for the joint analysis of latent developmental trajectories and survival [J].
Entink, Rinke H. Klein ;
Fox, Jean-Paul ;
van den Hout, Ardo .
STATISTICS IN MEDICINE, 2011, 30 (18) :2310-2325
[6]   Atypical and typical presentations of Alzheimer's disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases [J].
Galton, CJ ;
Patterson, K ;
Xuereb, JH ;
Hodges, JR .
BRAIN, 2000, 123 :484-498
[7]   ON THE ASSIGNMENT OF INDIVIDUALS TO LATENT CLASSES [J].
Goodman, Leo A. .
SOCIOLOGICAL METHODOLOGY 2007, VOL 37, 2007, 37 :1-22
[8]   Estimating a treatment effect from multidimensional longitudinal data [J].
Gray, SM ;
Brookmeyer, R .
BIOMETRICS, 1998, 54 (03) :976-988
[9]   Cognitive decline in the elderly: an analysis of population heterogeneity [J].
Hayden, Kathleen M. ;
Reed, Bruce R. ;
Manly, Jennifer J. ;
Tommet, Douglas ;
Pietrzak, Robert H. ;
Chelune, Gordon J. ;
Yang, Frances M. ;
Revell, Andrew J. ;
Bennett, David A. ;
Jones, Richard N. .
AGE AND AGEING, 2011, 40 (06) :684-689
[10]   Semi-parametric latent process model for longitudinal ordinal data: Application to cognitive decline [J].
Jacqmin-Gadda, Helene ;
Proust-Lima, Cecile ;
Amieva, Helene .
STATISTICS IN MEDICINE, 2010, 29 (26) :2723-2731