An artificial enzyme-based assay: DNA detection using a peroxidase-like copper-creatinine complex

被引:29
作者
Singh, Amardeep
Patra, Srikanta
Lee, Jeong-Ah
Park, Kang Hyun
Yang, Haesik [1 ]
机构
[1] Pusan Natl Univ, Dept Chem, Pusan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
Artificial enzyme; DNA sensor; Copper complex; Gold nanoparticle; Peroxidase; ELECTROCHEMICAL DETECTION; CATALYZED OXIDATION; NANOPARTICLES; IMMUNOASSAY; PROTEINS; REDUCTION; OXIDASE; BINDING; LABELS;
D O I
10.1016/j.bios.2011.06.009
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
We report an artificial enzyme-based DNA assay using a peroxidase-like copper (Cu)-creatinine complex as a catalyst for 3,3',5,5'-tetramethylbenzidine (TMB) oxidation. The assay employs double signal amplification and a homogeneous catalytic reaction: (i) fast catalytic growth of Cu on a gold (Au) nanopartide (NP) label forms a thick Cu layer (first amplification); (ii) dissolution of the Cu layer generates many Cu-creatinine complexes per NP (generation of homogeneous catalysts); (iii) peroxidase-like Cu-creatinine complexes rapidly convert TMB into a colored product (second amplification). To investigate the effect of ligand on the catalytic activities of Cu complexes, the kinetics of catalytic TMB oxidation is tested with and without using imidazole ring-containing ligands (creatinine, imidazole, and poly(L-histidine)). Both fast oxidation of TMB and slow further oxidation of the colored product are required for high signal-to-background ratios. Cu-creatinine complex allows relatively fast oxidation and slow further oxidation. Fast seed-mediated Cu growth on Au NP and slow Cu autonucleation (i.e., slow formation of Cu NP in the absence of Au NP) are also required for high signal-to-background ratios. In tris-EDTA (tris(hydroxymethyl)aminomethane-ethylenediaminetetraacetic acid) buffer (pH 7.7) containing high concentrations of Cu(2+) (90 mM), ascorbic acid (50 mM), and Mg(2+) (200 mM), Cu growth on Au NP is very fast and autonucleation is significantly suppressed. Fast catalytic oxidation by Cu-creatinine complex along with fast Cu growth on Au NP allows a detection limit of 0.1 pM for DNA in a simple microplate format. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4798 / 4803
页数:6
相关论文
共 31 条
[21]  
NYGREN H, 1989, IMMUNOLOGY, V66, P321
[22]   ENZYME-IMMUNOASSAY TECHNIQUES - AN OVERVIEW [J].
PORSTMANN, T ;
KIESSIG, ST .
JOURNAL OF IMMUNOLOGICAL METHODS, 1992, 150 (1-2) :5-21
[23]   Assay of creatinine using the peroxidase activity of copper-creatinine complexes [J].
Pugia, MJ ;
Lott, JA ;
Wallace, JF ;
Cast, TK ;
Bierbaum, LD .
CLINICAL BIOCHEMISTRY, 2000, 33 (01) :63-70
[24]   Nanostructures in biodiagnostics [J].
Rosi, NL ;
Mirkin, CA .
CHEMICAL REVIEWS, 2005, 105 (04) :1547-1562
[25]   Selective dsDNA-Templated Formation of Copper Nanoparticles in Solution [J].
Rotaru, Alexandru ;
Dutta, Subrata ;
Jentzsch, Elmar ;
Gothelf, Kurt ;
Mokhir, Andriy .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (33) :5665-5667
[26]   Artificial metalloenzymes: proteins as hosts for enantioselective catalysis [J].
Thomas, CM ;
Ward, TR .
CHEMICAL SOCIETY REVIEWS, 2005, 34 (04) :337-346
[27]   COPPER(II)-POLY(L-HISTIDINE) AS AN ENZYME MODEL FOR L-ASCORBATE OXIDASE [J].
UEDA, J ;
HANAKI, A .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 1984, 57 (12) :3511-3516
[28]   Control of Antigen Mass Transport via Capture Substrate Rotation: Binding Kinetics and Implications on Immunoassay Speed and Detection Limits [J].
Wang, Gufeng ;
Driskell, Jeremy D. ;
Porter, Marc D. ;
Lipert, Robert J. .
ANALYTICAL CHEMISTRY, 2009, 81 (15) :6175-6185
[29]   A selective resonance scattering assay for immunoglobulin G using Cu(II)-ascorbic acid-immunonanogold reaction [J].
Wei, Xiaoling ;
Liang, Aihui ;
Zhang, Sheng-Sen ;
Jiang, Zhi-Liang .
ANALYTICAL BIOCHEMISTRY, 2008, 380 (02) :223-228
[30]   Combinatorial biomimetics.: Optimization of a composition of copper(II) poly-L-histidine complex as an electrocatalyst for O2 reduction by scanning electrochemical microscopy [J].
Weng, YC ;
Fan, FRF ;
Bard, AJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (50) :17576-17577