Arithmetic properties for Fu's 9 dots bracelet partitions

被引:0
|
作者
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruence; partitions; k dots bracelet partitions; CONGRUENCES MODULO POWERS;
D O I
10.1142/S1793042115500566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of Fu's k dots bracelet partitions was introduced by Shishuo Fu. For any positive integer k, let B-k(n) denote the number of Fu's k dots bracelet partitions of n. Fu also proved several congruences modulo primes and modulo powers of 2. Recently, Radu and Sellers extended the set of congruences proven by Fu by proving three congruences modulo squares of primes for B-5(n), B-7(n) and B-11(n). More recently, Cui and Gu, and Xia and the author derived a number of congruences modulo powers of 2 for B-5(n). In this paper, we prove four congruences modulo 2 and two congruences modulo 4 for B-9(n) by establishing the generating functions of B-9(An + B) modulo 4 for some values of A and B.
引用
收藏
页码:1063 / 1072
页数:10
相关论文
共 29 条
  • [11] Arithmetic properties of partitions with odd parts distinct
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 22 (03) : 273 - 284
  • [12] Arithmetic properties of 7-regular partitions
    Liuquan Wang
    The Ramanujan Journal, 2018, 47 : 99 - 115
  • [13] Arithmetic properties of partitions with odd parts distinct
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 22 : 273 - 284
  • [14] Arithmetic properties of 7-regular partitions
    Wang, Liuquan
    RAMANUJAN JOURNAL, 2018, 47 (01) : 99 - 115
  • [15] Arithmetic properties of partitions with even parts distinct
    George E. Andrews
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 23 : 169 - 181
  • [16] Arithmetic properties of partitions with even parts distinct
    Andrews, George E.
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 23 (1-3) : 169 - 181
  • [17] ARITHMETIC PROPERTIES OF COLORED p-ARY PARTITIONS
    Zmija, B.
    ACTA MATHEMATICA HUNGARICA, 2023, 171 (1) : 53 - 66
  • [18] Arithmetic properties of colored p-ary partitions
    B. Żmija
    Acta Mathematica Hungarica, 2023, 171 : 53 - 66
  • [19] ARITHMETIC PROPERTIES OF 3-REGULAR PARTITIONS IN THREE COLOURS
    Da Silva, Robson
    Sellers, James A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (03) : 415 - 423
  • [20] Arithmetic Properties of Non-Squashing Partitions into Distinct Parts
    Øystein J. Rødseth
    James A. Sellers
    Kevin M. Courtright
    Annals of Combinatorics, 2004, 8 (3) : 347 - 353