Arithmetic properties for Fu's 9 dots bracelet partitions

被引:0
|
作者
Yao, Olivia X. M. [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruence; partitions; k dots bracelet partitions; CONGRUENCES MODULO POWERS;
D O I
10.1142/S1793042115500566
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of Fu's k dots bracelet partitions was introduced by Shishuo Fu. For any positive integer k, let B-k(n) denote the number of Fu's k dots bracelet partitions of n. Fu also proved several congruences modulo primes and modulo powers of 2. Recently, Radu and Sellers extended the set of congruences proven by Fu by proving three congruences modulo squares of primes for B-5(n), B-7(n) and B-11(n). More recently, Cui and Gu, and Xia and the author derived a number of congruences modulo powers of 2 for B-5(n). In this paper, we prove four congruences modulo 2 and two congruences modulo 4 for B-9(n) by establishing the generating functions of B-9(An + B) modulo 4 for some values of A and B.
引用
收藏
页码:1063 / 1072
页数:10
相关论文
共 29 条
  • [1] CONGRUENCES MODULO POWERS OF 2 FOR FU'S 5 DOTS BRACELET PARTITIONS
    Xia, Ernest X. W.
    Yao, Olivia X. M.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 89 (03) : 360 - 372
  • [2] CONGRUENCES MODULO SQUARES OF PRIMES FOR FU'S k DOTS BRACELET PARTITIONS
    Radu, Cristian-Silviu
    Sellers, James A.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (04) : 939 - 943
  • [3] Congruences for broken 3-diamond and 7 dots bracelet partitions
    Su-Ping Cui
    Nancy S. S. Gu
    The Ramanujan Journal, 2014, 35 : 165 - 178
  • [4] Congruences for broken 3-diamond and 7 dots bracelet partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    RAMANUJAN JOURNAL, 2014, 35 (01) : 165 - 178
  • [5] ARITHMETIC PROPERTIES OF TRIANGULAR PARTITIONS
    Kim, Byungchan
    KOREAN JOURNAL OF MATHEMATICS, 2020, 28 (04): : 791 - 802
  • [6] Arithmetic properties of summands of partitions
    Dartyge, C
    Sárközy, A
    RAMANUJAN JOURNAL, 2004, 8 (02) : 199 - 215
  • [7] Arithmetic Properties of Summands of Partitions
    Cécile Dartyge
    András Sárközy
    The Ramanujan Journal, 2004, 8 : 199 - 215
  • [8] Arithmetic Properties of Summands of Partitions II
    Cécile Dartyge
    András Sárközy
    The Ramanujan Journal, 2005, 10 : 383 - 394
  • [9] Arithmetic properties of summands of partitions II
    Dartyge, C
    Sárközy, A
    RAMANUJAN JOURNAL, 2005, 10 (03) : 383 - 394
  • [10] Arithmetic properties of l-regular partitions
    Cui, Su-Ping
    Gu, Nancy S. S.
    ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (04) : 507 - 523