Ideal magnetohydrodynamic theory for localized interchange modes in toroidal anisotropic plasmas

被引:2
作者
Shi, Tonghui [1 ]
Zheng, L. J. [2 ]
Wan, B. N. [1 ]
Sun, Y. [1 ]
Shen, B. [1 ]
Qian, J. P. [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
[2] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
基金
中国国家自然科学基金;
关键词
INTERNAL KINK MODE; HYDROMAGNETIC STABILITY; EQUILIBRIUM; INSTABILITIES; CRITERION;
D O I
10.1063/1.4961923
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Ideal magnetohydrodynamic theory for localized interchange modes is developed for toroidal plasmas with anisotropic pressure. The work extends the existing theories of Johnson and Hastie [Phys. Fluids 31, 1609 (1988)], etc., to the low n mode case, where n is the toroidal mode number. Also, the plasma compressibility is included, so that the coupling of the parallel motion to perpendicular one, i.e., the so-called apparent mass effect, is investigated in the anisotropic pressure case. The singular layer equation is obtained, and the generalized Mercier's criterion is derived. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 35 条
[1]  
Anthony Cooper W., 1985, Phys. Fluids, V28, P2, DOI [10.1063/1.865090, DOI 10.1063/1.865090]
[2]   The effect of an anisotropic pressure of thermal particles on resistive wall mode stability [J].
Berkery, J. W. ;
Betti, R. ;
Sabbagh, S. A. ;
Guazzotto, L. ;
Manickam, J. .
PHYSICS OF PLASMAS, 2014, 21 (11)
[3]   AN ENERGY PRINCIPLE FOR HYDROMAGNETIC STABILITY PROBLEMS [J].
BERNSTEIN, IB ;
FRIEMAN, EA ;
KRUSKAL, MD ;
KULSRUD, RM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 244 (1236) :17-40
[4]  
Bingren S.H.I., 2006, PLASMA SCI TECHNOL, V8, P255, DOI [10.1088/1009-0630/8/3/02, DOI 10.1088/1009-0630/8/3/02]
[5]   STABILITY OF ANISOTROPIC-PRESSURE TOKAMAK EQUILIBRIA TO IDEAL BALLOONING MODES [J].
BISHOP, CM ;
HASTIE, RJ .
NUCLEAR FUSION, 1985, 25 (10) :1443-1449
[6]  
Carreras B. A., 1987, ONRLTM10030
[7]  
Cheremnykh O. K., 1981, Sov. J. Plasma Phys, V7, P717
[8]   THE BOLTZMANN EQUATION AND THE ONE-FLUID HYDROMAGNETIC EQUATIONS IN THE ABSENCE OF PARTICLE COLLISIONS [J].
CHEW, GF ;
GOLDBERGER, ML ;
LOW, FE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1956, 236 (1204) :112-118
[9]   MHD normal mode analysis with equilibrium pressure anisotropy [J].
Fitzgerald, M. ;
Hole, M. J. ;
Qu, Z. S. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (02)
[10]   EFIT tokamak equilibria with toroidal flow and anisotropic pressure using the two-temperature guiding-centre plasma [J].
Fitzgerald, M. ;
Appel, L. C. ;
Hole, M. J. .
NUCLEAR FUSION, 2013, 53 (11)