Circular RNAs contribute to the progression of glioma. However, the biological role and underlying mechanism of circ_0082375 in glioma remain unclear. Quantitative real-time PCR and Western blot assay were used to evaluate the expres-sion levels of circ_0082375, microRNA-485-5p, and Wnt family member 7B (Wnt7B). The overall survival of glioma patients was estimated by the Kaplan-Meier curve. Cell prolifera-tion, apoptosis, invasion, and migration were detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, and transwell assays, respectively. Glucose level and lactate production were determined using glucose and lactate assay kits. In vitro angiogenesis assay was used to evaluate the angiogenesis of glioma cells. The interaction between microRNA (miR)-485-5p and circ_0082375 or Wnt family member 7B (Wnt7B) was verified by dual-luciferase reporter and RNA immunoprecipitation assays. A xenograft model was used to verify the function of circ_0082375 in vivo. circ_0082375 was upregulated in glioma tissues, and was closely related to the prognosis of glioma patients. circ_0082375 knockdown suppressed cell proliferation, migration, invasion, angiogenesis, glycolysis, and epithe-lial-mesenchymal transition (EMT), and promoted cell apoptosis in glioma cells. irc_0082375 was a sponge of miR-485-5p, which directly targeted Wnt7B. Knockdown of circ_0082375 inhibited the malignancy, angiogenesis, and glycolysis of glioma cells in vitro by sponging miR-485-5p. Besides, circ_0082375 knockdown hampered the growth of glioma growth by regulating the miR-485-5p/Wnt7B axis in vivo. Altogether, circ_0082375 regulated miR-485-5p/Wnt7B axis to promote the malignancy, angiogenesis, and glyco-lysis of glioma cells, thereby contributing to the progres-sion of glioma.