On the Solution-Space Geometry of Random Constraint Satisfaction Problems

被引:57
作者
Achlioptas, Dimitris [1 ,2 ]
Coja-Oghlan, Amin [3 ]
Ricci-Tersenghi, Federico [4 ,5 ]
机构
[1] Univ Calif Santa Cruz, Dept Comp Sci, Santa Cruz, CA 95064 USA
[2] RACTI, Patras 26500, Greece
[3] Univ Warwick, Coventry CV4 7AL, W Midlands, England
[4] Univ Roma La Sapienza, Dept Phys, Ist Nazl Fis Nucl, I-00185 Rome, Italy
[5] Univ Roma La Sapienza, IPCF CNR, Rome, Italy
基金
欧洲研究理事会;
关键词
random formulas; satisfiability; k-SAT; statistical mechanics; computational complexity; K-SAT; PHASE-TRANSITIONS; SHARP THRESHOLDS; RANDOM FORMULAS;
D O I
10.1002/rsa.20323
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For various random constraint satisfaction problems there is a significant gap between the largest constraint density for which solutions exist and the largest density for which any polynomial time algorithm is known to find solutions. Examples of this phenomenon include random k-SAT, random graph coloring, and a number of other random constraint satisfaction problems. To understand this gap, we study the structure of the solution space of random k-SAT (i.e., the set of all satisfying assignments viewed as a subgraph of the Hamming cube). We prove that for densities well below the satisfiability threshold, the solution space decomposes into an exponential number of connected components and give quantitative bounds for the diameter, volume, and number. (c) 2010 Wiley Periodicals, Inc. Random Struct. Alg., 38, 251-268, 2011
引用
收藏
页码:251 / 268
页数:18
相关论文
共 20 条
  • [1] Rigorous location of phase transitions in hard optimization problems
    Achlioptas, D
    Naor, A
    Peres, Y
    [J]. NATURE, 2005, 435 (7043) : 759 - 764
  • [2] The threshold for random k-SAT is 2k log 2-O(k)
    Achlioptas, D
    Peres, Y
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 17 (04) : 947 - 973
  • [3] ACHLIOPTAS D, 2002, P 43 ANN S FDN COMP, P126
  • [4] RANDOM FORMULAS HAVE FROZEN VARIABLES
    Achlioptas, Dimitris
    Ricci-Tersenghi, Federico
    [J]. SIAM JOURNAL ON COMPUTING, 2009, 39 (01) : 260 - 280
  • [5] Algorithmic Barriers from Phase Transitions
    Achlioptas, Dimitris
    Coja-Oghlan, Amin
    [J]. PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 793 - +
  • [6] Exhaustive enumeration unveils clustering and freezing in the random 3-satisfiability problem
    Ardelius, John
    Zdeborovae, Lenka
    [J]. PHYSICAL REVIEW E, 2008, 78 (04):
  • [7] Pairs of SAT-assignments in random boolean formulae
    Daude, Herve
    Mezard, Marc
    Mora, Thierry
    Zecchina, Riccardo
    [J]. THEORETICAL COMPUTER SCIENCE, 2008, 393 (1-3) : 260 - 279
  • [8] A general upper bound for the satisfiability threshold of random r-SAT formulae
    Dubois, O
    Boufkhad, Y
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1997, 24 (02): : 395 - 420
  • [9] Dubois O., 2003, ELECT C COMPUT COMPL, V10
  • [10] ERDOS P, 1987, COMBINATORICA, V7, P35