On Mean Value formulas for solutions to second order linear PDEs
被引:0
作者:
Cupini, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, ItalyUniv Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
Cupini, Giovanni
[1
]
Lanconelli, Ermanno
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, ItalyUniv Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
Lanconelli, Ermanno
[1
]
机构:
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
HARNACK INEQUALITY;
VALUE PROPERTY;
PRINCIPLE;
EQUATIONS;
KERNELS;
D O I:
暂无
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper we give a general proof of Mean Value formulas for solutions to second order linear PDEs, only based on the local properties of their fundamental solution Gamma. Our proof requires a kind of pointwise vanishing integral condition for the intrinsic gradient of Gamma. Combining our Mean Value formulas with a "descent method" due to Kuptsov, we obtain formulas with improved kernels. As an application, we implement our general results to heat operators on stratified Lie groups and to Kolmogorov operators.