Error estimates in Sobolev spaces for moving least square approximations

被引:60
作者
Armentano, MG [1 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
关键词
error estimates; moving least square; meshless method;
D O I
10.1137/S0036142999361608
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to obtain error estimates for moving least square (MLS) approximations in R-N. We prove that, under appropriate hypotheses on the weight function and the distribution of points, the method produces optimal order error estimates in L-infinity and L-2 for the approximations of the function and its first derivatives. These estimates are important in the analysis of Galerkin approximations based on the MLS method. In particular, our results provide error estimates, optimal in order and regularity, for second order coercive problems.
引用
收藏
页码:38 / 51
页数:14
相关论文
共 11 条
  • [1] [Anonymous], 1982, NUMERICAL ANAL
  • [2] ARMENTANO MG, IN PRESS APPL NUMER
  • [3] BELYTSCHKO T, 1997, COMPUT METHODS APPL, V148, P257
  • [4] BELYTSCHKO T, 1994, COMPUT METHODS APPL, V113, P397
  • [5] Brenner S. C., 2007, Texts Appl. Math., V15
  • [6] CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
  • [7] Johnson C., 1987, Numerical Solution of Partial Differemtial Equations by the Finite Element Method
  • [8] LANCASTER P, 1981, MATH COMPUT, V37, P141, DOI 10.1090/S0025-5718-1981-0616367-1
  • [9] The approximation power of moving least-squares
    Levin, D
    [J]. MATHEMATICS OF COMPUTATION, 1998, 67 (224) : 1517 - 1531
  • [10] Shepard D., 1968, P 1968 23 ACM NAT C, P517, DOI [10.1145/800186.810616, DOI 10.1145/800186.810616]