Serosa-Mimetic Nanoarchitecture Membranes for Highly Efficient Osmotic Energy Generation

被引:123
作者
Man, Zengming [1 ,2 ]
Safaei, Javad [1 ]
Zhang, Zhen [3 ,4 ]
Wang, Yizhou [1 ]
Zhou, Dong [1 ]
Li, Peng [2 ]
Zhang, Xiaogang [2 ]
Jiang, Lei [5 ]
Wang, Guoxiu [1 ]
机构
[1] Univ Technol Sydney, Fac Sci, Ctr Clean Energy Technol, Sch Math & Phys Sci, Sydney, NSW 2007, Australia
[2] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Peoples R China
[3] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Dept Chem & Food Chem, D-01062 Dresden, Germany
[5] Chinese Acad Sci, Tech Inst Phys & Chem, Beijing 100190, Peoples R China
关键词
SUSTAINABLE POWER-GENERATION; REVERSE ELECTRODIALYSIS; GRADIENT; NANOCHANNELS; TRANSPORT;
D O I
10.1021/jacs.1c07392
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Osmotic energy stored between seawater and freshwater is a clean and renewable energy source. However, developing high-efficiency and durable permselective membranes for harvesting osmotic energy remains a longstanding bottleneck. Herein, we report that a nanocomposite membrane with a biological serosa-mimetic structure can achieve high-performance osmotic energy generation through the coupling of two-dimensional (2D) sulfonated covalent organic framework (COF) nano-sheets and anion-grafted aramid nanofibers (ANFs). As verified by theoretical calculations and experimental investigations, the 2D COF nanosheets not only provide abundant one-dimensional (1D)/2D nanofluidic channels to synergistically benefit an ultrafast ion migration but also enable high cation permselectivity via the covalently tethered anions. The grafted ANFs increase the mechanical strength of the membrane and further improve the ion diffusion/rectification. When it was applied in an osmotic power generator, the biomimetic membrane delivered a power density of 9.6 W m(-2), far surpassing the commercial benchmark of 5.0 W m(-2). This work could boost the viability of osmotic energy conversion toward a sustainable future.
引用
收藏
页码:16206 / 16216
页数:11
相关论文
共 48 条
[1]   Nanofluidics, from bulk to interfaces [J].
Bocquet, Lyderic ;
Charlaix, Elisabeth .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :1073-1095
[2]   Preparation of 2D material dispersions and their applications [J].
Cai, Xingke ;
Luo, Yuting ;
Liu, Bilu ;
Cheng, Hui-Ming .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (16) :6224-6266
[3]   Bioinspired Ultrastrong Nanocomposite Membranes for Salinity Gradient Energy Harvesting from Organic Solutions [J].
Chen Cheng ;
Liu Dan ;
Yang Guoliang ;
Wang Jiemin ;
Wang Lifeng ;
Lei Weiwei .
ADVANCED ENERGY MATERIALS, 2020, 10 (18)
[4]   Bio-inspired Nanocomposite Membranes for Osmotic Energy Harvesting [J].
Chen, Cheng ;
Liu, Dan ;
He, Li ;
Qin, Si ;
Wang, Jiemin ;
Razal, Joselito M. ;
Kotov, Nicholas A. ;
Lei, Weiwei .
JOULE, 2020, 4 (01) :247-261
[5]   Ultrathin and Robust Silk Fibroin Membrane for High-Performance Osmotic Energy Conversion [J].
Chen, Jianjun ;
Xin, Weiwen ;
Kong, Xiang-Yu ;
Qian, Yongchao ;
Zhao, Xiaolu ;
Chen, Weipeng ;
Sun, Yue ;
Wu, Yadong ;
Jian, Lei ;
Wen, Liping .
ACS ENERGY LETTERS, 2020, 5 (03) :742-748
[6]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[7]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764
[8]   Single-layer MoS2 nanopores as nanopower generators [J].
Feng, Jiandong ;
Graf, Michael ;
Liu, Ke ;
Ovchinnikov, Dmitry ;
Dumcenco, Dumitru ;
Heiranian, Mohammad ;
Nandigana, Vishal ;
Aluru, Narayana R. ;
Kis, Andras ;
Radenovic, Aleksandra .
NATURE, 2016, 536 (7615) :197-+
[9]   Using Smart Nanochannels as a Power Switch in Salinity Gradient Batteries [J].
Fu, Lulu ;
Jiang, Jiaqiao ;
Lu, Bingxin ;
Xu, Yanglei ;
Zhai, Jin .
CHEMNANOMAT, 2019, 5 (09) :1182-1187
[10]   High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation [J].
Gao, Jun ;
Guo, Wei ;
Feng, Dan ;
Wang, Huanting ;
Zhao, Dongyuan ;
Jiang, Lei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (35) :12265-12272