From density-matrix renormalization group to matrix product states

被引:316
作者
McCulloch, Ian P. [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys C, D-52056 Aachen, Germany
关键词
density matrix renormalization group calculations; other numerical approaches; quantum phase transitions (theory); quantum many body problems;
D O I
10.1088/1742-5468/2007/10/P10014
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we give an introduction to the numerical density matrix renormalization group (DMRG) algorithm, from the perspective of the more general matrix product state (MPS) formulation. We cover in detail the differences between the original DMRG formulation and the MPS approach, demonstrating the additional flexibility that arises from constructing both the wavefunction and the Hamiltonian in MPS form. We also show how to make use of global symmetries, for both the Abelian and non-Abelian cases.
引用
收藏
页数:19
相关论文
共 47 条
[1]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[2]  
Biedenharn L C., 1981, Angular Momentum in Quantum Physics: Theory and Application number v. 8 in Encyclopedia of Mathematics and Its Applications
[3]  
Section
[4]   Density-matrix spectra of solvable fermionic systems [J].
Chung, MC ;
Peschel, I .
PHYSICAL REVIEW B, 2001, 64 (06)
[5]  
CIZZINI M, 2006, CONDMAT0611727
[6]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[7]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[8]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[9]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[10]   Finite-temperature density matrix renormalization using an enlarged Hilbert space [J].
Feiguin, AE ;
White, SR .
PHYSICAL REVIEW B, 2005, 72 (22)