COMPRESSED SENSING MRI WITH BAYESIAN DICTIONARY LEARNING

被引:0
作者
Ding, Xinghao [1 ]
Paisley, John [2 ]
Huang, Yue [1 ]
Chen, Xianbo [1 ]
Huang, Feng [3 ]
Zhang, Xiao-ping [1 ,4 ]
机构
[1] Xiamen Univ, Dept Commun Engn, Fujian, Peoples R China
[2] Univ Calif Berkeley, Dept EECS, Berkeley, CA 94720 USA
[3] Philips Res China, Shanghai, Peoples R China
[4] Ryerson Univ, Dept Elect & Comp Engn, Toronto, ON, Canada
来源
2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013) | 2013年
关键词
compressed sensing; MRI reconstruction; dictionary learning; Bayesian models; IMAGE-RECONSTRUCTION; ALGORITHM;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We present an inversion algorithm for magnetic resonance images (MRI) that are highly undersampled in k-space. The proposed method incorporates spatial finite differences (total variation) and patch-wise sparsity through in situ dictionary learning. We use the beta-Bernoulli process as a Bayesian prior for dictionary learning, which adaptively infers the dictionary size, the sparsity of each patch and the noise parameters. In addition, we employ an efficient numerical algorithm based on the alternating direction method of multipliers (ADMM). We present empirical results on two MR images.
引用
收藏
页码:2319 / 2323
页数:5
相关论文
共 24 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Low-dimensional-Structure Self-Learning and Thresholding: Regularization Beyond Compressed Sensing for MRI Reconstruction [J].
Akcakaya, Mehmet ;
Basha, Tamer A. ;
Goddu, Beth ;
Goepfert, Lois A. ;
Kissinger, Kraig V. ;
Tarokh, Vahid ;
Manning, Warren J. ;
Nezafat, Reza .
MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (03) :756-767
[3]  
[Anonymous], INT C MACH LEARN
[4]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[5]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[6]   A nonlinear primal-dual method for total variation-based image restoration [J].
Chan, TF ;
Golub, GH ;
Mulet, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 20 (06) :1964-1977
[7]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[8]  
Darbon J, 2005, LECT NOTES COMPUT SC, V3522, P351
[9]   Bayesian Robust Principal Component Analysis [J].
Ding, Xinghao ;
He, Lihan ;
Carin, Lawrence .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) :3419-3430
[10]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306