Existence and construction of compacton solutions

被引:27
作者
Wazwaz, AM [1 ]
机构
[1] St Xavier Coll, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
D O I
10.1016/S0960-0779(03)00171-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we show the existence of compacton structures created from genuinely nonlinear dispersive equations. We show that the compactons, the compactly supported solitary waves free of exponential wings that vanish outside a finite core, are formally constructed from the focusing branches of these equations. We further show that the defocusing branches of these models generate solitary patterns solutions with infinite slopes or cusps. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:463 / 470
页数:8
相关论文
共 34 条
  • [2] Adomian G., 1994, SOLVING FRONTIER PRO
  • [3] Franciscan choir enclosures and the function of double-sided altarpieces in pre-tridentine Umbria
    Cooper, D
    [J]. JOURNAL OF THE WARBURG AND COURTAULD INSTITUTES, 2001, 64 : 1 - 54
  • [4] Shape profile of compactlike discrete breathers in nonlinear dispersive lattice systems
    Dey, B
    Eleftheriou, M
    Flach, S
    Tsironis, GP
    [J]. PHYSICAL REVIEW E, 2002, 65 (01):
  • [5] Breather compactons in nonlinear Klein-Gordon systems
    Dinda, PT
    Remoissenet, M
    [J]. PHYSICAL REVIEW E, 1999, 60 (05): : 6218 - 6221
  • [6] From kinks to compactonlike kinks
    Dusuel, S
    Michaux, P
    Remoissenet, M
    [J]. PHYSICAL REVIEW E, 1998, 57 (02): : 2320 - 2326
  • [7] A numerical study of compactons
    Ismail, MS
    Taha, TR
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (06) : 519 - 530
  • [8] KIVSHAR YS, 1994, NATO ADV SCI INST SE, V329, P255
  • [9] KUMAR CN, 1999, PHYS LETT A, P17
  • [10] Patterns on liquid surfaces: cnoidal waves, compactons and scaling
    Ludu, A
    Draayer, JP
    [J]. PHYSICA D, 1998, 123 (1-4): : 82 - 91