Stimulated fission of high-order optical breather via pairwise interaction of solitons in model of nonlinear Schrodinger equation with variable coefficients

被引:0
作者
Konyukhov, A. I. [1 ,2 ]
Mavrin, P. A. [1 ]
Schurkin, E. V. [1 ]
Gochelashvili, K. S. [2 ]
Sysoliatin, A. A. [2 ]
Melnikov, L. A. [2 ,3 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Astrakhanskaya 83, Saratov, Russia
[2] Gen Phys Inst, Vavilov Str 38, Moscow, Russia
[3] Saratov State Tech Univ, Politehn Skaya 77, Saratov, Russia
来源
SARATOV FALL MEETING 2017: LASER PHYSICS AND PHOTONICS XVIII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA IV | 2018年 / 10717卷
基金
俄罗斯科学基金会;
关键词
Optical solitons; Nonlinear Schrodinger equation; inelastic collision; dispersion variation; FOURIER-TRANSFORM; DISSIPATIVE SOLITONS;
D O I
10.1117/12.2315186
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Artificial periodic structures offers an additional degree of freedom in manipulation of nonlinear waves and solitons. It is shown that periodical variation of the coefficients of nonlinear Schrodinger equation allows to change soliton eigenvalues. Pairwise interaction of solitons is demonstrated. The interacting solitons can be selected by appropriate period of the variation of the coefficients of nonlinear Schrodinger equation. The proposed approach for controlling soliton eigenvalues allows to manipulate soliton fission process.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Dromion-like soliton interactions for nonlinear Schrodinger equation with variable coefficients in inhomogeneous optical fibers
    Liu, Wenjun
    Zhang, Yujia
    Luan, Zitong
    Zhou, Qin
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Biswas, Anjan
    NONLINEAR DYNAMICS, 2019, 96 (01) : 729 - 736
  • [32] Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schrodinger equation in nonlinear optics
    Seadawy, Aly R.
    Cheemaa, Nadia
    MODERN PHYSICS LETTERS B, 2019, 33 (18):
  • [33] High-Order Linearly Implicit Structure-Preserving Exponential Integrators for the Nonlinear Schrodinger Equation
    Jianig, Chaolong
    Cui, Jin
    Qian, Xu
    Song, Songhe
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 90 (01)
  • [34] Hermite-Gaussian vortex solitons of a (3+1)-dimensional partially nonlocal nonlinear Schrodinger equation with variable coefficients
    Zhu, Hai-Ping
    Chen, Li
    Chen, Hai-Yan
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1913 - 1918
  • [35] Conservation laws, bound-state solitons and modulation instability for a variable-coefficient higher-order nonlinear Schrodinger equation in an optical fiber
    Yang, Sheng-Xiong
    Wang, Yu-Feng
    Jia, Rui-Rui
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [36] Optical solitons and traveling wave solutions for the higher-order nonlinear Schrodinger equation with derivative non-Kerr nonlinear terms
    Tang, Lu
    OPTIK, 2022, 271
  • [37] A variety of nonautonomous complex wave solutions for the (2+1)-dimensional nonlinear Schrodinger equation with variable coefficients in nonlinear optical fibers
    Liu, Jian-Guo
    Osman, M. S.
    Wazwaz, Abdul-Majid
    OPTIK, 2019, 180 : 917 - 923
  • [38] Subpicosecond pulse compression in nonlinear photonic crystal waveguides based on the formation of high-order optical solitons
    Chen, XW
    Lin, XS
    Sheng, L
    CHINESE PHYSICS, 2005, 14 (02): : 366 - 371
  • [39] Diverse optical solitons to nonlinear perturbed Schrodinger equation with quadratic-cubic nonlinearity via two efficient approaches
    Ur Rehman, Shafqat
    Ahmad, Jamshad
    PHYSICA SCRIPTA, 2023, 98 (03)
  • [40] Dark optical solitons and modulation instability analysis of nonlinear Schrodinger equation with higher order dispersion and cubic-quntic nonlinearity
    Ghanbari, Behzad
    Yusuf, Abdullahi
    Inc, Mustafa
    JOURNAL OF COUPLED SYSTEMS AND MULTISCALE DYNAMICS, 2018, 6 (03) : 217 - 227