Stimulated fission of high-order optical breather via pairwise interaction of solitons in model of nonlinear Schrodinger equation with variable coefficients

被引:0
作者
Konyukhov, A. I. [1 ,2 ]
Mavrin, P. A. [1 ]
Schurkin, E. V. [1 ]
Gochelashvili, K. S. [2 ]
Sysoliatin, A. A. [2 ]
Melnikov, L. A. [2 ,3 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Astrakhanskaya 83, Saratov, Russia
[2] Gen Phys Inst, Vavilov Str 38, Moscow, Russia
[3] Saratov State Tech Univ, Politehn Skaya 77, Saratov, Russia
来源
SARATOV FALL MEETING 2017: LASER PHYSICS AND PHOTONICS XVIII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA IV | 2018年 / 10717卷
基金
俄罗斯科学基金会;
关键词
Optical solitons; Nonlinear Schrodinger equation; inelastic collision; dispersion variation; FOURIER-TRANSFORM; DISSIPATIVE SOLITONS;
D O I
10.1117/12.2315186
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Artificial periodic structures offers an additional degree of freedom in manipulation of nonlinear waves and solitons. It is shown that periodical variation of the coefficients of nonlinear Schrodinger equation allows to change soliton eigenvalues. Pairwise interaction of solitons is demonstrated. The interacting solitons can be selected by appropriate period of the variation of the coefficients of nonlinear Schrodinger equation. The proposed approach for controlling soliton eigenvalues allows to manipulate soliton fission process.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] A fast insight into the optical solitons of the generalized third-order nonlinear Schrodinger's equation
    Wang, Kang-Jia
    RESULTS IN PHYSICS, 2022, 40
  • [22] A high-order nonlinear Schrodinger equation as a variational problem for the averaged Lagrangian of the nonlinear Klein-Gordon equation
    Gandzha, Ivan S.
    Sedletsky, Yuri V.
    NONLINEAR DYNAMICS, 2019, 98 (01) : 359 - 374
  • [23] A new approach to exact soliton solutions and soliton interaction for the nonlinear Schrodinger equation with variable coefficients
    Hao, RY
    Li, L
    Li, ZH
    Xue, WR
    Zhou, GS
    OPTICS COMMUNICATIONS, 2004, 236 (1-3) : 79 - 86
  • [24] Simple high-order boundary conditions for computing rogue waves in the nonlinear Schrodinger equation
    Wang, Pengde
    Xu, Zhiguo
    Yin, Jia
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 251 (251)
  • [25] High-order mass-and energy-conserving methods for the nonlinear schrodinger equation
    Bai G.
    Hu J.
    Li B.
    SIAM Journal on Scientific Computing, 2024, 46 (02) : A1026 - A1046
  • [26] A second-order nonlinear Schrodinger equation with weakly nonlocal and parabolic laws and its optical solitons
    Mirzazadeh, M.
    Hosseini, K.
    Dehingia, K.
    Salahshour, S.
    OPTIK, 2021, 242 (242):
  • [27] The generalized higher-order nonlinear Schrodinger equation: Optical solitons and other solutions in fiber optics
    Younas, Usman
    Baber, M. Z.
    Yasin, M. W.
    Sulaiman, T. A.
    Ren, Jingli
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (18):
  • [28] Solitons, breathers and periodic rogue waves for the variable-coefficient seventh-order nonlinear Schrodinger equation
    Jiang, Dongzhu
    Zhaqilao
    PHYSICA SCRIPTA, 2023, 98 (08)
  • [29] Optical solitons, multiwave, breather and M-shaped solitons for an nonlinear Schrodinger equation in (2+1)-dimensions with cubic-quintic-septic law
    Ahmed, Sarfaraz
    Seadawy, Aly R.
    Rizvi, Syed T. R.
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2024, 33 (03)
  • [30] Optical quasi-soliton solutions for the cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Yang, Q
    Zhang, JF
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2005, 19 (31): : 4629 - 4636