Dynamics of Anderson localization in disordered wires

被引:1
|
作者
Khalaf, E. [1 ]
Ostrovsky, P. M. [1 ,2 ]
机构
[1] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] RAS, LD Landau Inst Theoret Phys, Chernogolovka 142432, Russia
基金
俄罗斯科学基金会;
关键词
TIME-ORDER CORRELATION; TOPOLOGICAL INSULATORS; FOURIER-ANALYSIS; ELECTRON-SYSTEM; ENERGY-LEVELS; EDGE STATES; QUANTUM; DIFFUSION; PARTICLE; EIGENFUNCTIONS;
D O I
10.1103/PhysRevB.96.201105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the dynamics of an electron in an infinite disordered metallic wire. We derive exact expressions for the probability of diffusive return to the starting point in a given time. The result is valid for wires with or without time-reversal symmetry and allows for the possibility of topologically protected conducting channels. In the absence of protected channels, Anderson localization leads to a nonzero limiting value of the return probability at long times, which is approached as a negative power of time with an exponent depending on the symmetry class. When topologically protected channels are present (in a wire of either unitary or symplectic symmetry), the probability of return decays to zero at long time as a power law whose exponent depends on the number of protected channels. Technically, we describe the electron dynamics by the one-dimensional supersymmetric nonlinear sigma model. We derive an exact identity that relates any local dynamical correlation function in a disordered wire of unitary, orthogonal, or symplectic symmetry to a certain expectation value in the random matrix ensemble of class AIII, CI, or DIII, respectively. The established exact mapping from a one-to a zero-dimensional sigma model is very general and can be used to compute any local observable in a disordered wire.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum dynamics and Anderson localization of electrons in disordered systems of scatterers
    Filinov, VS
    Lozovik, YE
    Filinov, AV
    Zacharov, IE
    Oparin, AM
    IZVESTIYA AKADEMII NAUK SERIYA FIZICHESKAYA, 1998, 62 (06): : 1179 - 1184
  • [2] Resonant Anderson localization in segmented wires
    Estarellas, Cristian
    Serra, Llorenc
    PHYSICAL REVIEW E, 2016, 93 (03)
  • [3] Suppression of Anderson localization in disordered metamaterials
    Asatryan, Ara A.
    Botten, Lindsay C.
    Byrne, Michael A.
    Freilikher, Valentin D.
    Gredeskul, Sergey A.
    Shadrivov, Ilya V.
    McPhedran, Ross C.
    Kivshar, Yuri S.
    PHYSICAL REVIEW LETTERS, 2007, 99 (19)
  • [4] Observation of the topological Anderson insulator in disordered atomic wires
    Meier, Eric J.
    An, Fangzhao Alex
    Dauphin, Alexandre
    Maffei, Maria
    Massignan, Pietro
    Hughes, Taylor L.
    Gadway, Bryce
    SCIENCE, 2018, 362 (6417) : 929 - +
  • [5] On the localization of electrons in disordered molecular wires
    Woloszyn, M
    Spisak, BJ
    MATERIALS SCIENCE-POLAND, 2004, 22 (04): : 545 - 551
  • [6] Anderson localization in finite disordered vibrating rods
    Flores, J.
    Gutierrez, L.
    Mendez-Sanchez, R. A.
    Monsivais, G.
    Mora, P.
    Morales, A.
    EPL, 2013, 101 (06)
  • [7] Breakdown of Anderson localization in disordered quantum chains
    Shima, H
    Nakayama, T
    MICROELECTRONICS JOURNAL, 2005, 36 (3-6) : 422 - 424
  • [8] ANDERSON LOCALIZATION IN TOPOLOGICALLY DISORDERED-SYSTEMS
    LOGAN, DE
    WOLYNES, PG
    PHYSICAL REVIEW B, 1985, 31 (04): : 2437 - 2450
  • [9] ELECTRON LOCALIZATION IN DISORDERED SYSTEMS (ANDERSON TRANSITION)
    EFROS, AL
    USPEKHI FIZICHESKIKH NAUK, 1978, 126 (01): : 41 - 65
  • [10] Observation of Anderson localization in disordered nanophotonic structures
    Sheinfux, Hanan Herzig
    Lumer, Yaakov
    Ankonina, Guy
    Genack, Azriel Z.
    Bartal, Guy
    Segev, Mordechai
    SCIENCE, 2017, 356 (6341) : 953 - 955