G distributions and the beta-gamma algebra

被引:20
作者
Dufresne, Daniel [1 ]
机构
[1] Univ Melbourne, Ctr Actuarial Studies, Melbourne, Vic 3010, Australia
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2010年 / 15卷
关键词
Beta distribution; beta product distribution; gamma distribution; G distributions; Barnes' lemmas; Mellin transforms; infinite divisibility; Macdonald's function;
D O I
10.1214/EJP.v15-845
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper has four interrelated themes: (1) express Laplace and Mellin transforms of sums of positive random variables in terms of the Mellin transform of the summands; (2) show the equivalence of the two Barnes' lemmas with known properties of gamma distributions; (3) establish properties of the sum of two reciprocal gamma variables, and related results; (4) study the G distributions (whose Mellin transforms are ratios of products of gamma functions).
引用
收藏
页码:2163 / 2199
页数:37
相关论文
共 28 条
  • [1] Andrews G., 2000, Special Functions
  • [2] [Anonymous], 1999, CAMBRIDGE STUD ADV M
  • [3] [Anonymous], 1910, Quart. J. Math.
  • [4] [Anonymous], 1992, LECT NOTES STAT
  • [5] Barnes EW, 1908, P LOND MATH SOC, V6, P141
  • [6] Carmona P., 1997, Exponential functionals and principal values related to Brownian motion
  • [7] Additive properties of the Dufresne laws and their multivariate extension
    Chamayou, JF
    Letac, G
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (04) : 1045 - 1066
  • [8] CHOUMONT L, 2003, EXERCISES PROBABILIT
  • [9] Cox DR., 1955, Math Proc Camb Phil Soc., V51, P313, DOI DOI 10.1017/S0305004100030231
  • [10] Algebraic properties of beta and gamma distributions, and applications
    Dufresne, D
    [J]. ADVANCES IN APPLIED MATHEMATICS, 1998, 20 (03) : 285 - 299