A Band-Edge Potential Gradient Heterostructure to Enhance Electron Extraction Efficiency of the Electron Transport Layer in High-Performance Perovskite Solar Cells

被引:109
作者
Hou, Yu [1 ,2 ]
Chen, Xiao [1 ]
Yang, Shuang [1 ]
Li, Chunzhong [1 ]
Zhao, Huijun [2 ]
Yang, Hua Gui [1 ]
机构
[1] East China Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Ultrafine Mat, 130 Meilong Rd, Shanghai 200237, Peoples R China
[2] Griffith Univ, Ctr Clean Environm & Energy, Gold Coast Campus, Nathan, Qld 4222, Australia
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
electron transport layers; gradient heterojunctions; interface engineering; perovskite solar cells; ORGANOMETAL HALIDE PEROVSKITES; BULK HETEROJUNCTION; TEMPERATURE; PHOTOVOLTAICS; PASSIVATION; NANORODS; POLYMER; GROWTH; OXIDE; FILM;
D O I
10.1002/adfm.201700878
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As the key component in efficient perovskite solar cells, the electron transport layer (ETL) can selectively collect photogenerated charge carriers produced in perovskite absorbers and prevent the recombination of carriers at interfaces, thus ensuring a high power conversion efficiency. Compared with the conventional single-or dual-layered ETLs, a gradient heterojunction (GHJ) strategy is more attractive to facilitate charge separation because the potential gradient created at an appropriately structured heterojunction can act as a driving force to regulate the electron transport toward a desired direction. Here, a SnO2/TiO2 GHJ interlayer configuration inside the ETL is reported to simultaneously achieve effective extraction and efficient transport of photoelectrons. With such an interlayer configuration, the GHJs formed at the perovskite/ETL interface act collectively to extract photogenerated electrons from the perovskite layer, while GHJs formed at the boundaries of the interconnected SnO2 and TiO2 networks throughout the entire ETL layer can extract electron from the slow electron mobility TiO2 network to the high electron mobility SnO2 network. Devices based on GHJ ETL exhibit a champion power conversion efficiency of 18.08%, which is significantly higher than that obtained from the compact TiO2 ETL constructed under the comparable conditions.
引用
收藏
页数:7
相关论文
共 37 条
  • [1] [Anonymous], 1989, ENERGY ENV SCI
  • [2] Low-temperature processed meso-superstructured to thin-film perovskite solar cells
    Ball, James M.
    Lee, Michael M.
    Hey, Andrew
    Snaith, Henry J.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) : 1739 - 1743
  • [3] Sequential deposition as a route to high-performance perovskite-sensitized solar cells
    Burschka, Julian
    Pellet, Norman
    Moon, Soo-Jin
    Humphry-Baker, Robin
    Gao, Peng
    Nazeeruddin, Mohammad K.
    Graetzel, Michael
    [J]. NATURE, 2013, 499 (7458) : 316 - +
  • [4] Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends
    Campoy-Quiles, Mariano
    Ferenczi, Toby
    Agostinelli, Tiziano
    Etchegoin, Pablo G.
    Kim, Youngkyoo
    Anthopoulos, Thomas D.
    Stavrinou, Paul N.
    Bradley, Donal D. C.
    Nelson, Jenny
    [J]. NATURE MATERIALS, 2008, 7 (02) : 158 - 164
  • [5] Large-grained perovskite films via FAxMA1-xPb(IxBr1-x)3 single crystal precursor for efficient solar cells
    Chen, Bai-Xue
    Li, Wen-Guang
    Rao, Hua-Shang
    Xu, Yang-Fan
    Kuang, Dai-Bin
    Su, Cheng-Yong
    [J]. NANO ENERGY, 2017, 34 : 264 - 270
  • [6] Ordered macroporous CH3NH3PbI3 perovskite semitransparent film for high-performance solar cells
    Chen, Bai-Xue
    Rao, Hua-Shang
    Chen, Hong-Yan
    Li, Wen-Guang
    Kuang, Dai-Bin
    Su, Cheng-Yong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (40) : 15662 - 15669
  • [7] TiO2 passivation for improved efficiency and stability of ZnO nanorods based perovskite solar cells
    Chen, Peng
    Yin, Xingtian
    Que, Meidan
    Yang, Yawei
    Que, Wenxiu
    [J]. RSC ADVANCES, 2016, 6 (63) : 57996 - 58002
  • [8] A low-temperature processed flower-like TiO2 array as an electron transport layer for high-performance perovskite solar cells
    Chen, Xiao
    Tang, Li Juan
    Yang, Shuang
    Hou, Yu
    Yang, Hua Gui
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (17) : 6521 - 6526
  • [9] Simultaneous use of small- and wide-angle X-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells
    Chiu, Mao-Yuan
    Jeng, U-Ser
    Su, Chiu-Hun
    Liang, Keng S.
    Wei, Kung-Hwa
    [J]. ADVANCED MATERIALS, 2008, 20 (13) : 2573 - +
  • [10] Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer
    Dong, Qingshun
    Shi, Yantao
    Wang, Kai
    Li, Yu
    Wang, Shufeng
    Zhang, Hong
    Xing, Yujin
    Du, Yi
    Bai, Xiaogong
    Ma, Tingli
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (19) : 10212 - 10217