Uncertain Lambert Problem: A Probabilistic Approach

被引:6
作者
Adurthi, Nagavenkat [1 ]
Majji, Manoranjan [2 ]
机构
[1] Univ Alabama, Huntsville, AL 35899 USA
[2] Texas A M Univ, College Stn, TX USA
基金
美国国家科学基金会;
关键词
Uncertain Lambert problem; Uncertainty quantification; TRANSFORMATION;
D O I
10.1007/s40295-019-00205-z
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
A complete solution to the uncertain Lambert problem is considered in this paper. While the deterministic Lambert problem considers the two point boundary value problem of the two body problem with a fixed transfer time, its uncertain counterpart is shown to be related to the propagation of uncertainty from a set of initial conditions. In contrast to the linearized solutions of the uncertain Lambert problem associated with a particular solution, our paper outlines a numerical process to characterize the non-Gaussian uncertainty associated with all solutions. Applications of solutions to the uncertain Lambert problem are detailed using representative examples.
引用
收藏
页码:361 / 386
页数:26
相关论文
共 30 条
[1]   N-impulse orbit transfer using genetic algorithms [J].
Abdelkhalik, Ossama ;
Mortari, Daniele .
JOURNAL OF SPACECRAFT AND ROCKETS, 2007, 44 (02) :456-460
[2]  
ADURTHI N, 2017, 2017 AIAA AAS ASTR S
[3]   Conjugate Unscented Transformation-Based Approach for Accurate Conjunction Analysis [J].
Adurthi, Nagavenkat ;
Singla, Puneet .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2015, 38 (09) :1642-1658
[4]  
Adurthi N, 2012, P AMER CONTR CONF, P5556
[5]  
[Anonymous], 1995, Markov chain Monte Carlo in practice
[6]  
Battin R. H., 1999, INTRO MATH METHODS A
[7]   LAMBERTS PROBLEM REVISITED [J].
BATTIN, RH .
AIAA JOURNAL, 1977, 15 (05) :707-713
[8]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[9]   Optimal Transport Over a Linear Dynamical System [J].
Chen, Yongxin ;
Georgiou, Tryphon T. ;
Pavon, Michele .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (05) :2137-2152
[10]   Numerical integration using sparse grids [J].
Gerstner, T ;
Griebel, M .
NUMERICAL ALGORITHMS, 1998, 18 (3-4) :209-232