Role of edge geometry and chemistry in the electronic properties of graphene nanostructures

被引:58
作者
Fujii, Shintaro [1 ]
Ziatdinov, Maxim [2 ]
Ohtsuka, Misako [1 ]
Kusakabe, Koichi [3 ]
Kiguchi, Manabu [1 ]
Enoki, Toshiaki [1 ]
机构
[1] Tokyo Inst Technol, Dept Chem, Meguro Ku, Tokyo 1528551, Japan
[2] Tokyo Inst Technol, Dept Organ & Polymer Mat, Meguro Ku, Tokyo 1528552, Japan
[3] Osaka Univ, Grad Sch Engn Sci, Toyonaka, Osaka 5508531, Japan
关键词
STATE; NANOGRAPHENE; NANORIBBONS; TERMINATION; MAGNETISM;
D O I
10.1039/c4fd00073k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The geometry and chemistry of graphene nanostructures significantly affects their electronic properties. Despite a large number of experimental and theoretical studies dealing with the geometrical shape-dependent electronic properties of graphene nanostructures, experimental characterisation of their chemistry is clearly lacking. This is mostly due to the difficulties in preparing chemically-modified graphene nanostructures in a controlled manner and in identifying the exact chemistry of the graphene nanostructure on the atomic scale. Herein, we present scanning probe microscopic and first-principles characterisation of graphene nanostructures with different edge geometries and chemistry. Using the results of atomic scale electronic characterisation and theoretical simulation, we discuss the role of the edge geometry and chemistry on the electronic properties of graphene nanostructures with hydrogenated and oxidised linear edges at graphene boundaries and the internal edges of graphene vacancy defects. Atomic-scale details of the chemical composition have a strong impact on the electronic properties of graphene nanostructures, i.e., the presence or absence of non-bonding pi states and the degree of resonance stability.
引用
收藏
页码:173 / 199
页数:27
相关论文
共 51 条
[31]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[32]   On the chemical nature of graphene edges: Origin of stability and potential for magnetism in carbon materials [J].
Radovic, LR ;
Bockrath, B .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (16) :5917-5927
[33]   Graphene: The New Two-Dimensional Nanomaterial [J].
Rao, C. N. R. ;
Sood, A. K. ;
Subrahmanyam, K. S. ;
Govindaraj, A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (42) :7752-7777
[34]   Honeycomb superperiodic pattern and its fine structure near the armchair edge of graphene observed by low-temperature scanning tunneling microscopy [J].
Sakai, Ken-ichi ;
Takai, Kazuyuki ;
Fukui, Ken-ichi ;
Nakanishi, Takeshi ;
Enoki, Toshiaki .
PHYSICAL REVIEW B, 2010, 81 (23)
[35]   Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia [J].
Seitsonen, Ari P. ;
Saitta, A. Marco ;
Wassmann, Tobias ;
Lazzeri, Michele ;
Mauri, Francesco .
PHYSICAL REVIEW B, 2010, 82 (11)
[36]   Electronic States and Local Density of States in Graphene with a Corner Edge Structure [J].
Shimomura, Yuji ;
Takane, Yositake ;
Wakabayashi, Katsunori .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2011, 80 (05)
[37]   The SIESTA method for ab initio order-N materials simulation [J].
Soler, JM ;
Artacho, E ;
Gale, JD ;
García, A ;
Junquera, J ;
Ordejón, P ;
Sánchez-Portal, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (11) :2745-2779
[38]   PI-ELECTRON PROPERTIES OF LARGE CONDENSED POLYAROMATIC HYDROCARBONS [J].
STEIN, SE ;
BROWN, RL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1987, 109 (12) :3721-3729
[39]   Termini of Bottom-Up Fabricated Graphene Nanoribbons [J].
Talirz, Leopold ;
Soede, Hajo ;
Cai, Jinming ;
Ruffieux, Pascal ;
Blankenburg, Stephan ;
Jafaar, Rached ;
Berger, Reinhard ;
Feng, Xinliang ;
Muellen, Klaus ;
Passerone, Daniele ;
Fasel, Roman ;
Pignedoli, Carlo A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (06) :2060-2063
[40]  
Tao CG, 2011, NAT PHYS, V7, P616, DOI [10.1038/nphys1991, 10.1038/NPHYS1991]