Semi-supervised Approach for Finding Cancer Sub-classes on Gene Expression Data

被引:0
作者
Ribeiro, Clerton [1 ]
de Carvalho, Francisco de Assis T. [1 ]
Costa, Ivan G. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
来源
ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY | 2010年 / 6268卷
关键词
cancer gene expression; mixture discriminant analysis; semi-supervised learning; constraint based mixture estimation; CLASS DISCOVERY; CLASSIFICATION;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The analysis of cancer gene expression is intrinsically a semi-supervised problem, as one is interested in building a classifier for diagnosis, but also on finding new sub-classes of cancer. We propose here a method for Mixture Discriminant Analysis (MDA), which can simultaneously detect sub-classes of cancer and perform classification. We evaluate the method on 10 gene expression data sets. MDA not only improved the classification in some of these data sets, as it detected some known and putative sub-classes of cancer.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 21 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[3]   Is cross-validation valid for small-sample microarray classification? [J].
Braga-Neto, UM ;
Dougherty, ER .
BIOINFORMATICS, 2004, 20 (03) :374-380
[4]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[5]  
Chapelle O., 2006, SEMISUPERVISED LEARN
[6]   Constrained mixture estimation for analysis and robust classification of clinical time series [J].
Costa, Ivan G. ;
Schoenhuth, Alexander ;
Hafemeister, Christoph ;
Schliep, Alexander .
BIOINFORMATICS, 2009, 25 (12) :I6-I14
[7]   Clustering cancer gene expression data: a comparative study [J].
de Souto, Marcilio C. P. ;
Costa, Ivan G. ;
de Araujo, Daniel S. A. ;
Ludermir, Teresa B. ;
Schliep, Alexander .
BMC BIOINFORMATICS, 2008, 9 (1)
[8]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[9]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[10]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537