SMITH FORMS OF PALINDROMIC MATRIX POLYNOMIALS

被引:0
作者
Mackey, D. Steven [1 ]
Mackey, Niloufer [1 ]
Mehl, Christian [2 ]
Mehrmann, Volker [2 ]
机构
[1] Western Michigan Univ, Dept Math, Kalamazoo, MI 49008 USA
[2] Tech Univ Berlin, Inst Math, MA 4 5, D-10623 Berlin, Germany
基金
美国国家科学基金会;
关键词
Compound matrix; Elementary divisors; Invariant polynomials; Jordan structure; Matrix pencil; Matrix polynomial; Palindromic matrix polynomial; Smith form; Structured linearization; MINIMAL INDEXES; LINEARIZATIONS; RECOVERY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Many applications give rise to matrix polynomials whose coefficients have a kind of reversal symmetry, a structure we call palindromic. Several properties of scalar palindromic polynomials are derived, and together with properties of compound matrices, used to establish the Smith form of regular and singular T-palindromic matrix polynomials over arbitrary fields. The invariant polynomials are shown to inherit palindromicity, and their structure is described in detail. Jordan structures of palindromic matrix polynomials are characterized, and necessary conditions for the existence of structured linearizations established. In the odd degree case, a constructive procedure for building palindromic linearizations shows that the necessary conditions are sufficient as well. The Smith form for *-palindromic polynomials is also analyzed. Finally, results for palindromic matrix polynomials over fields of characteristic two are presented.
引用
收藏
页码:53 / 91
页数:39
相关论文
共 50 条
  • [41] Random Perturbations of Matrix Polynomials
    Pagacz, Patryk
    Wojtylak, Michal
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (01) : 52 - 88
  • [42] On the stability radius of matrix polynomials
    Psarrakos, PJ
    Tsatsomeros, MJ
    LINEAR & MULTILINEAR ALGEBRA, 2002, 50 (02) : 151 - 165
  • [43] Random Perturbations of Matrix Polynomials
    Patryk Pagacz
    Michał Wojtylak
    Journal of Theoretical Probability, 2022, 35 : 52 - 88
  • [44] A MATRIX POSITIVSTELLENSATZ WITH LIFTING POLYNOMIALS
    Klep, Igor
    Nie, Jiawang
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 240 - 261
  • [45] On the bounds of eigenvalues of matrix polynomials
    W. M. Shah
    Sooraj Singh
    The Journal of Analysis, 2023, 31 : 821 - 829
  • [46] On a compression of normal matrix polynomials
    Adam, M
    Psarrakos, P
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) : 251 - 263
  • [47] REMARKS ON INVERSE OF MATRIX POLYNOMIALS
    Fischer, Cyril
    Naprstek, Jiri
    PROGRAMS AND ALGORITHMS OF NUMERICAL MATHEMATICS 18, 2017, : 24 - 29
  • [48] NUMERICAL RANGE OF MATRIX POLYNOMIALS
    LI, CK
    RODMAN, L
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (04) : 1256 - 1265
  • [49] ON THE BOUNDS OF THE EIGENVALUES OF MATRIX POLYNOMIALS
    Shah, Wali Mohammad
    Monga, Zahid Bashir
    KOREAN JOURNAL OF MATHEMATICS, 2023, 31 (02): : 145 - 152
  • [50] Discrete orthogonal matrix polynomialsДискретные ортогональные матричные полиномы
    Raúl Felipe
    Analysis Mathematica, 2009, 35 (3) : 189 - 197