Selective-area catalyst-free MBE growth of GaN nanowires using a patterned oxide layer

被引:86
作者
Schumann, T. [1 ,2 ,3 ]
Gotschke, T. [1 ,2 ,3 ]
Limbach, F. [1 ,2 ,3 ]
Stoica, T. [1 ]
Calarco, R. [1 ,2 ,3 ]
机构
[1] Res Ctr Julich GmbH, Inst Bio & Nanosyst IBN 1, D-52425 Julich, Germany
[2] Res Ctr Julich GmbH, JARA Fundamentals Future Informat Technol, D-52425 Julich, Germany
[3] Paul Drude Inst Festkorperelekt, D-10117 Berlin, Germany
关键词
MOLECULAR-BEAM EPITAXY; INN NANOWIRES; OPTICAL-PROPERTIES; NANOCOLUMNS; SUBSTRATE; PHOTOLUMINESCENCE; TEMPERATURE; NUCLEATION; DEPENDENCE; MORPHOLOGY;
D O I
10.1088/0957-4484/22/9/095603
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
GaN nanowires (NWs) were grown selectively in holes of a patterned silicon oxide mask, by rf-plasma-assisted molecular beam epitaxy (PAMBE), without any metal catalyst. The oxide was deposited on a thin AlN buffer layer previously grown on a Si(111) substrate. Regular arrays of holes in the oxide layer were obtained using standard e-beam lithography. The selectivity of growth has been studied varying the substrate temperature, gallium beam equivalent pressure and patterning layout. Adjusting the growth parameters, GaN NWs can be selectively grown in the holes of the patterned oxide with complete suppression of the parasitic growth in between the holes. The occupation probability of a hole with a single or multiple NWs depends strongly on its diameter. The selectively grown GaN NWs have one common crystallographic orientation with respect to the Si(111) substrate via the AlN buffer layer, as proven by x-ray diffraction (XRD) measurements. Based on the experimental data, we present a schematic model of the GaN NW formation in which a GaN pedestal is initially grown in the hole.
引用
收藏
页数:6
相关论文
共 36 条
[1]   Catalyst-free growth of GaN nanowires [J].
Bertness, KA ;
Sanford, NA ;
Barker, JM ;
Schlager, JB ;
Roshko, A ;
Davydov, AV ;
Levin, I .
JOURNAL OF ELECTRONIC MATERIALS, 2006, 35 (04) :576-580
[2]   Controlled Nucleation of GaN Nanowires Grown with Molecular Beam Epitaxy [J].
Bertness, Kris A. ;
Sanders, Aric W. ;
Rourke, Devin M. ;
Harvey, Todd E. ;
Roshko, Alexana ;
Schlager, John B. ;
Sanford, Norman A. .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (17) :2911-2915
[3]   Size- and shape-controlled GaAs nano-whiskers grown by MOVPE:: a growth study [J].
Borgström, M ;
Deppert, K ;
Samuelson, L ;
Seifert, W .
JOURNAL OF CRYSTAL GROWTH, 2004, 260 (1-2) :18-22
[4]   Synergetic nanowire growth [J].
Borgstrom, Magnus T. ;
Immink, George ;
Ketelaars, Bas ;
Algra, Rienk ;
Bakkers, Erik P. A. M. .
NATURE NANOTECHNOLOGY, 2007, 2 (09) :541-544
[5]   Sub-meV linewidth of excitonic luminescence in single GaN nanowires: Direct evidence for surface excitons [J].
Brandt, Oliver ;
Pfueller, Carsten ;
Cheze, Caroline ;
Geelhaar, Lutz ;
Riechert, Henning .
PHYSICAL REVIEW B, 2010, 81 (04)
[6]   GaN and InN nanowires grown by MBE: A comparison [J].
Calarco, R. ;
Marso, M. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2007, 87 (03) :499-503
[7]   Luminescence properties and defects in GaN nanocolumns grown by molecular beam epitaxy [J].
Calleja, E ;
Sánchez-García, MA ;
Sánchez, FJ ;
Calle, F ;
Naranjo, FB ;
Muñoz, E ;
Jahn, U ;
Ploog, K .
PHYSICAL REVIEW B, 2000, 62 (24) :16826-16834
[8]   Wurtzite GaN nanocolumns grown on Si(001) by molecular beam epitaxy [J].
Cerutti, L. ;
Ristic, J. ;
Fernandez-Garrido, S. ;
Calleja, E. ;
Trampert, A. ;
Ploog, K. H. ;
Lazic, S. ;
Calleja, J. M. .
APPLIED PHYSICS LETTERS, 2006, 88 (21)
[9]   Direct comparison of catalyst-free and catalyst-induced GaN nanowires [J].
Cheze, Caroline ;
Geelhaar, Lutz ;
Brandt, Oliver ;
Weber, Walter M. ;
Riechert, Henning ;
Muench, Steffen ;
Rothemund, Ralph ;
Reitzenstein, Stephan ;
Forchel, Alfred ;
Kehagias, Thomas ;
Komninou, Philomela ;
Dimitrakopulos, George P. ;
Karakostas, Theodoros .
NANO RESEARCH, 2010, 3 (07) :528-536
[10]   Nucleation mechanisms of epitaxial GaN nanowires: Origin of their self-induced formation and initial radius [J].
Consonni, V. ;
Knelangen, M. ;
Geelhaar, L. ;
Trampert, A. ;
Riechert, H. .
PHYSICAL REVIEW B, 2010, 81 (08)