Hyperbranched Liquid Crystals Modified with Sisal Cellulose Fibers for Reinforcement of Epoxy Composites

被引:7
作者
Luo, Qiyun [1 ]
Li, Yuqi [1 ]
Ren, Li [1 ]
Xu, Xu [1 ]
Lu, Shaorong [1 ]
机构
[1] Guilin Univ Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab New Proc Technol Nonferrous Met & Mat, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
sisal cellulose fibers; epoxy resin; composites; liquid crystals; hyperbranched; NATURAL FIBERS; MECHANICAL-PROPERTIES; PERFORMANCE; BEHAVIOR;
D O I
10.3390/polym10091024
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Well-defined functionalized sisal cellulose fibers (SCFs) grafted on hyperbranched liquid crystals (HLP) were synthesized to improve the compatibility between SCFs and epoxy resin (EP). The influence of SCFs-HLP on the mechanical and thermal properties of SCFs-HLP/EP composites was studied. The results show that the mechanical properties of SCFs-HLP/EP composites were enhanced distinctly. Particularly, compared with EP, impact strength, tensile strength, and flexural strength of composites with 4.0 wt % SCFs-HLP were 38.3 KJ.m(-2), 86.2 MPa, and 150.7 MPa, increasing by 118.7%, 55.6%, and 89.6%, respectively. As well, the glass transition temperature of the composite material increased by 25 degrees C. It is hope that this work will inform ongoing efforts to exploit more efficient methods to overcome the poor natural fiber/polymer adhesion in the interface region.
引用
收藏
页数:12
相关论文
共 33 条
[1]   Stimuli-responsive cellulose modified by epoxy-functionalized polymer nanoparticles with photochromic and solvatochromic properties [J].
Abdollahi, Amin ;
Rad, Jaber Keyvan ;
Mahdavian, Ali Reza .
CARBOHYDRATE POLYMERS, 2016, 150 :131-138
[2]   Hydrophobic cellulose fibers via ATRP and their performance in the removal of pyrene from water [J].
Arteta, Sandra M. ;
Vera, Ricardo ;
Perez, Leon D. .
JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (07)
[3]   Thermomechanical and morphological properties of epoxy resins modified with functionalized hyperbranched polyester [J].
Blanco, I. ;
Cicala, G. ;
Lo Faro, C. ;
Motta, O. ;
Recca, G. .
POLYMER ENGINEERING AND SCIENCE, 2006, 46 (11) :1502-1511
[4]   The effects of different chemical treatment methods on the mechanical and thermal properties of textile fiber reinforced polymer composites [J].
Bodur, Mehmet Safa ;
Bakkal, Mustafa ;
Sonmez, Hasret Ece .
JOURNAL OF COMPOSITE MATERIALS, 2016, 50 (27) :3817-3830
[5]   Grafting of cellulose by ring-opening polymerisation - A review [J].
Carlmark, Anna ;
Larsson, Emma ;
Malmstrom, Eva .
EUROPEAN POLYMER JOURNAL, 2012, 48 (10) :1646-1659
[6]  
Chartrand A., 2016, J APPL POLYM SCI, V133, P44348
[7]   Utilization of algae blooms as a source of natural fibers for biocomposite materials: Study of morphology and mechanical performance of Lyngbya fibers [J].
Constante, Alejandra ;
Pillay, Selvum ;
Ning, Haibin ;
Vaidya, Uday K. .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2015, 12 :412-420
[8]  
Dasan YK, 2017, J APPL POLYM SCI, V134, DOI [10.1002/APP.44328, 10.1002/app.44328]
[9]   Cellulose fibers extracted from rice and oat husks and their application in hydrogel [J].
de Oliveira, Jean Paulo ;
Bruni, Graziella Pinheiro ;
Lima, Karina Oliveira ;
Lisie Mello El Halal, Shanise ;
da Rosa, Gabriela Silveira ;
Guerra Dias, Alvaro Renato ;
Zavareze, Elessandra da Rosa .
FOOD CHEMISTRY, 2017, 221 :153-160
[10]   Review: current international research into cellulose nanofibres and nanocomposites [J].
Eichhorn, S. J. ;
Dufresne, A. ;
Aranguren, M. ;
Marcovich, N. E. ;
Capadona, J. R. ;
Rowan, S. J. ;
Weder, C. ;
Thielemans, W. ;
Roman, M. ;
Renneckar, S. ;
Gindl, W. ;
Veigel, S. ;
Keckes, J. ;
Yano, H. ;
Abe, K. ;
Nogi, M. ;
Nakagaito, A. N. ;
Mangalam, A. ;
Simonsen, J. ;
Benight, A. S. ;
Bismarck, A. ;
Berglund, L. A. ;
Peijs, T. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (01) :1-33